
Geometric Mean Distance
— 

Its Derivation and Application in  
Inductance Calculations

Robert Weaver, Saskatoon, Canada

2016-03-05  
(Revised 2016-03-06 )1

Abstract
This article begins with an informal introduction to the use of Geometric Mean Distance (GMD) in 
inductance  calculations,  and  why  it  is  important.  This  is  followed  by  brief  discussion  of  the 
logarithm function. Because it pervades the subject of GMD calculation, it is important to have a 
good working knowledge of various logarithmic identities and integrals of formulae involving 
logarithms. The issue of integrating across logarithmic anomalies (i.e., log(0) ) is also treated.

The self GMD is derived in complete detail for some very simple shapes, in order to demonstrate 
the  general  analytical  method  of  calculation.  This  is  followed  by  a  discussion  of  the  use  of 
numerical methods—The Monte Carlo Method, in particular—for the GMD calculation of more 
difficult shapes. Detailed examples are given, which result in empirical formulae for the self GMD 
of a triangular area, the mutual GMD of elliptical areas and the self GMD of elliptical loci.

The use of GMD in inductance calculations is often accompanied by the proviso, that the "diameter 
of  the conductor should be considerably smaller than the diameter of  the winding."  However,  there is 
almost  nothing  available  in  the  literature  giving  quantitive  information  about  the  limits  of 
accuracy of the GMD method. This is treated for the cases of self inductance of a circular loop, and 
the mutual inductance of two parallel circular loops. Empirical functions are developed, which 
give the estimated error due to the approximation of the GMD method. These error formulae may 
be used to calculate correction factors. An example of this is given for a multi-turn solenoid coil.

The final part of the article deals with the calculation of the self GMD of groups of objects. In 
particular,  closed  form  formulae  are  developed  for  the  self  GMD  of  linear  arrays  of  circular 
conductors and linear arrays of thin strips of conductors. These are further developed into a new 
closed form formula for Rosa's round wire inductance corrections, and formulae for the inductance 
of short coils which account for conductor shape.

 For revision history, see the last page of this document. The latest version of this document may be downloaded, free 1

of charge, from the author's website: http://electronbunker.ca/DLpublic/GMD.pdf
– !  –1

http://electronbunker.ca/DLpublic/GMD.pdf


Table of Contents

Abstract 1
Part 1 - Basic Concepts 3
1.1 Introduction 3.........................................................................................................................................
1.2 Conventions 3.........................................................................................................................................
1.3 Inductance Calculations using GMD 4...............................................................................................
1.4 Why Geometric Mean and not Arithmetic Mean? 5.........................................................................
1.5 The Logarithm Function - A Primer 7.................................................................................................
Part 2 - Analytical Calculation of Simple Shapes 12
2.1 GMD of two co-linear lines of equal length 12..................................................................................
2.2 GMD of a Line from Itself (Self GMD of a line) 18............................................................................
Part 3 - Calculation of GMD using numerical methods 23
3.1 The Monte Carlo Method 23.................................................................................................................
3.2 The GMD of a Triangle 24.....................................................................................................................
3.3 The GMD of an Elliptical Area 27........................................................................................................
3.4 The Self GMD of an Elliptical Line 37.................................................................................................
Part 4 - Limits of Accuracy of the GMD method 44
4.1 Self Inductance 44..................................................................................................................................
4.2 Mutual Inductance 49............................................................................................................................
4.3 Example Calculation 60.........................................................................................................................
4.4 Summary 61............................................................................................................................................
Part 5 - Combined GMD of Multiple Objects 62
5.1 Basic Principles 62..................................................................................................................................
5.2 Formula for the GMD of a Linear Array of Circular Conductors (LACC) 63...............................
5.3 Formula for the GMD of a Linear Array of Co-linear Straight Line Segments (LALS) 71..........
5.4 Inductance Calculation Based on Aggregate GMD 75.....................................................................
5.5 Rosa's Round Wire Inductance Corrections 77..................................................................................
5.6 Flat Conductor Corrections 87.............................................................................................................
Afterword 89
References 90
Appendices 92
A – Program Listing for calculation of the GMD of an Elliptical Locus 92.........................................
B – A Method for Finding and Eliminating Errors in Mathematical Derivations 96.........................
Revision History 99

– !  –2



Part 1 - Basic Concepts

1.1 Introduction

It  is  impossible  to  study the  techniques  of  inductance calculation to  any great  extent  without 
encountering the term geometric  mean distance.  Often a simple but  inadequate explanation is 
given, resulting in more questions than answers. For that reason, this article has been prepared to 
address some of the basics and some of the common questions that arise. This is largely a non-
rigourous treatment. However, in different sections, the degree of rigour will vary, according to 
what information could be readily located or calculated with reasonable effort. For some sections, 
the reader will require some knowledge of basic calculus.

1.2 Conventions

In this article, SI units will be used. Where non-SI formulae are quoted from various references 
they will be adjusted to SI. Hence inductance will be expressed in henries, and length, diameter 
and radius in metres.

Logarithms  will  be  encountered  frequently,  and  in  all  cases  will  be  natural  logarithms.  The 
logarithm function will be indicated as log(). In other literature, Ln() is often used, but it means the 
same thing.

The following symbols will be used:

ϵ error
µ0 Permeability of free space, or vacuum, equal to 4π⨉10-7 henries/metre
µR Relative permeability of the medium under consideration
µ Absolute permeability of the medium under consideration (µ = µ0 ⨉ µR)
𝛾 self GMD shape characteristic factor 

a, b, c... principal dimensions (length, width etc.) of a shape under study
D Diameter of coil or loop of wire
d Diameter of conductor
g geometric mean distance (GMD) of one object from another
gS geometric mean distance of an object from itself (self GMD)2

gM mutual GMD, geometric mean distance between objects
k Miscellaneous numeric constant, often distinguished by a numeric subscript
ℓ Length (of conductor or coil depending on subscript)
ℓW Conductor (wire) length

 In the technical literature, the term geometric mean radius or GMR is often used for the geometric mean distance of an 2

object from itself. It is an inaccurate term, and hence, self GMD will be used in this discussion.
– !  –3



ℓC Coil length
n Number of turns in coil, or number of conductors in array
R Radius of coil or loop of wire

r Radius of conductor (the subscript is w for wire, since the subscript c has already been 
used for coil)

s length of line or line segment
u Shape factor, aspect ratio, or miscellaneous dimensionless ratio
uc Coil shape factor ℓC/R
x distance separating two conductors or filaments
xij distance separating conductor or filament i from conductor or filament j

A word of warning should be given about the use of symbols in this document. Because many of 
the derivations will  be developed in great  detail,  a  consequence of  this  is  that  many numeric 
constants  will  appear  during  the  derivation,  and  then  later  disappear  as  formulae  become 
simplified. For example, a formula that employs constants k0, k1, and k2 may end up having k0 and 
k1  drop  out,  leaving  an  orphan  k2.  Leaving  such  a  constant  named  k2  in  the  final  result  is 
guaranteed to invite confusion, especially if the formula is later presented out of context. For that 
reason, once a formula reaches its final form, some symbol names may change. Every attempt will 
be  made  to  clearly  point  this  out  whenever  it  happens.  In  any  event,  the  reader  is  hereby 
forewarned.

Similarly, the symbol u is used for ratios or shape factors such as length/diameter, length/width. 
Depending in which section it is used it may have different meanings. However, its definition will 
be given when it is introduced in a discussion.

1.3 Inductance Calculations using GMD

A formula  for  the  mutual  inductance  between  a  pair  parallel  of  identical  infinitesimally  thin 
filaments can be turned into a formula for self  inductance of a finite conductor by one of two 
methods:

1. Difficult: Integrate the filamentary mutual inductance formula across the cross sectional area of 
the  conductor  (a  double  integral  involving  area,  which  devolves  into  a  quadruple  integral 
involving length);

2. Moderately Easy: Determine the self-geometric mean distance (self GMD) of the cross section of 
the conductor, and then use that value to do a single mutual inductance calculation.

In  the  first  case  we  are  treating  the  conductor  as  an  infinite  number  of  parallel  infinitesimal 
filaments,  and then calculating the mutual inductance of each filament paired with each other 
filament, multiplying it by a weighting factor dA which is the infinitesimal cross sectional area of 
the filament. These mutual inductance calculations are summed and then divided by the total cross 
sectional area A of the conductor to yield the self inductance.

– !  –4



In the second case, we are doing essentially the same thing, with one important difference: In each 
mutual inductance calculation, rather than using the actual distance, xij, (between the filaments i 
and j), which varies with each filament pair, instead we use a mean of the distances separating the 
filament pairs. Using this single value allows for a massive simplification of the calculation—the 
integration becomes trivial—with virtually no loss of accuracy for most practical applications.

The GMD principle is strictly correct for an infinitely long straight conductor, but is approximately 
correct for a straight conductor of finite length, as long as the end effects are relatively small (i.e., 
the conductor diameter is significantly smaller than the conductor length). The GMD principle can 
also be applied to conductor geometries other than straight lines as long as the conductor diameter 
is small relative to the overall conductor length, and the radius of curvature is large compared to 
the cross sectional diameter of the conductor. This is because the GMD is really a two dimensional 
attribute related to the cross sectional geometry of the conductor (in,  say,  the X–Y plane),  and 
assumes that what goes on in the third dimension (Z–axis) is constant (ideally), or changes very 
gradually and smoothly relative to what happens in the other dimensions. In this way the effect of 
what happens in the third dimension has minimal effect on the field lines in the other dimensions. 
For the remainder of this discussion we will assume that conductor size is small relative to these 
other parameters. An exception will be where these conditions are deliberately violated in order to 
find the limits of accuracy of the GMD method.

1.4 Why Geometric Mean and not Arithmetic Mean?

Mutual inductance of two filaments is determined from the Neumann integral or one of several 
other equivalent formulae. The Neumann integral is: 

! (1.4.1)

where  x  is  the  distance  separating  infinitesimal  segments  of  filaments  ds1  and ds2.  When the 
integral is evaluated, the principle term will be log(x), because the integral ∫ 1⁄x dx is equal to log(x). 
Depending on the geometric details of the filaments, there will also be other terms, but generally 
having  a  smaller  contribution.  To  take  this  result  and  then  calculate  the  self  inductance  of  a 
conductor of finite cross section, it is necessary to integrate this log term across the cross sectional 
area  of  the  conductor.  Since  integration is  a  linear  operation,  it  is  permissible  to  simplify  the 
calculation by taking the arithmetic mean of the integrand and multiplying by the limits of the 
integral. But since the arithmetic mean of log(x) is the same as the antilog of the geometric mean of 
x, we are essentially taking the geometric mean of x. (There are some cases where one or two of the 
secondary non logarithmic terms are significant enough that an arithmetic mean or mean square 
should be applied to those terms rather than a geometric mean.)

For a straight conductor, we can take the formula for the mutual inductance between two straight 
filaments and using the self GMD of the conductor cross section, combine the two into a formula 

M = µ0
4⇡

Z
ds1 ⇧ ds2

x

– !  –5



for  the self  inductance of  a  straight conductor.  The formula for the mutual  inductance of  two 
parallel straight filaments [2] (page 31), adjusted to SI units, is:

! (1.4.2)

where ℓ is the length of the filaments, and x is their separation distance.

Assuming the conductor has a round cross section, the self GMD is given by Maxwell [1] (Art. 691) 
to be simply:

e-¼⨉r or 0.77880⨉r (1.4.3)

where r is the radius of the conductor.

We replace the finite round conductor with two fictitious infinitesimal filaments separated by the 
conductor’s self GMD, and use that self GMD value, as the separation distance, in the mutual 
inductance formula giving:

! (1.4.4)

In the case of a circular loop of round wire, we can use the mutual inductance formula for two 
circular filaments, in combination with the GMD of round wire to quickly come up with a formula 
for the self inductance of the loop. However, there’s a bit of a catch. So far, nothing has been said 
about the direction of offset of the two fictitious filaments. In the case of the straight conductor it 
makes no difference.  If  the conductor  cross  section is  in  the X-Y plane,  and the length of  the 
conductor is in the Z dimension, then the two filaments can be separated in either the X or Y 
dimension or a combination of both, because the conductor is radially symmetric. However, in the 
case of a circular loop we have the choice of using two filaments which are offset axially or radially 
(see diagram below).

The axial offset would seem to make the most sense, as there is no question about what the radius 
of the filaments should be (i.e., the same as the radius to the centre of the conductor). Indeed, that 
is generally the approach that is taken.

In the loop cross section shown in the leftmost  figure,  the two black dots indicate the spacial 
relationship of the proxy filaments in true scale relative to the conductor cross section for which 
they are substituted. It turns out that we can also use radially offset filaments (rightmost figure) as 
long as the mean radius of the two filaments is the same as radius of the centre of the conductor. 
But what kind of mean? Arithmetic or Geometric? Not surprisingly, in the context of inductance 
calculations, it turns out that it is the geometric mean. Two radially offset circular filaments whose 

M =

µ0`

2⇡

2

4
log

0

@ `

x

+

s

1 +

✓
`

x

◆2
1

A�
r

1 +

⇣
x

`

⌘2
+

x

`

3

5

L =

µ0`

2⇡

2

4
log

0

@ `

0.7788r
+

s

1 +

✓
`

0.7788r

◆2
1

A�

s

1 +

✓
0.7788r

`

◆2

+

0.7788r

`

3

5

– !  –6



geometric mean radius is the same as the radius of the centre of the 
conductor will give exactly the same inductance value as two axially 
offset filaments. (We are assuming conductors of round cross section.)

If the radius of the loop of conductor is R (measured from axis to centre 
of conductor), and the radii of the two proxy filaments are RA (inner) 
and RB (outer), then we are saying:

R = √(RA RB) (1.4.5)

And since the filaments are separated by a distance equal to gS, then:

gS = RB − RA (1.4.6)

Combining the two formulae, leads to a quadratic equation:

RA 2 + gS RA − R2 = 0 (1.4.7)

With the solution:

RA = ( −gS+√(gS2 + 4 R2))/2 (1.4.8)

RB = RA + gS (1.4.9)

In  the  above  right  diagram,  the  difference  between  arithmetic  mean 
positioning  and  geometric  mean  positioning  is  too  small  to  be  seen,  and  in  most  cases  the 
numerical  difference  is  also  nearly  insignificant,  but  for  the  most  accurate  calculations,  the 
geometric mean is the correct one. The above illustrations are scale drawings of loops with a radius 
of  8  (any units)  and conductor radius of  1.  For a geometric  mean positioning,  RA  and RB  are 
7.62007 and 8.39887 respectively, while for an arithmetic mean positioning, RA and RB would be 
7.61060 and 8.38940 respectively. The difference would be more significant if the ratio of conductor 
radius to loop radius were larger. However, with these larger ratios, the accuracy of the overall 
GMD approximation would deteriorate.

As an important consequence from the above, it can be seen that there is an equivalence between 
axially offset circular filaments and radially offset circular filaments (or for that matter filaments 
that are offset  both radially and axially).  This means that it  is  possible to convert a pair  of 
radially  offset  filaments  into  an  equivalent  pair  of  axially  offset  filaments  having  the  same 
mutual inductance. This will prove useful in developing certain inductance formulae.

1.5 The Logarithm Function - A Primer

Since the logarithm function figures prominently in GMD calculations, it is worthwhile to do a 
quick review of some of its properties. In calculus, the logarithm function, log(x), is defined as a 
definite integral with a variable upper limit:

! (1.5.1)

log x =

xZ

1

dt

t

⇥
x > 0

⇤
.

– !  –7



Alert  readers  will  note  that  when  calculating  geometric  mean  distances,  the  argument  of  the 
logarithm function is a distance, and not surprisingly, has the units of distance. It’s often stated 
that the argument of a logarithm function must be dimensionless, and in many cases it is the ratio 
of  two  values  which  have  the  same  dimensions  so  that  they  do  cancel  out  and  make  for  a 
dimensionless argument. In the case of GMD calculations we clearly see arguments which have 
dimensions of length. This leads to the question: What are the units of the result of the logarithm 
function?

From the above integral formula, it can be seen that if the variable x has dimensional units such as 
length, then both t and dt must take on the same units. Since dt is in the numerator and t is in the 
denominator,  the  units  cancel  out,  and  the  integrand  is  therefore  dimensionless.  Because 
integration is a linear operation, the units of the integrand, if any, become the units of the overall 
integral. Therefore, the argument of the logarithm function may have dimensional units, but from 
a  dimensional  analysis  point  of  view,  the  resulting  value  of  the  logarithm  function  is 
dimensionless.

Of course, this leads to the question of what happens when we take the anti-log of a dimensionless 
value. This seems to imply that a random dimension can magically appear as a result. However, 
common sense  tells  us  that  if  we  take  the  logarithm of  an  argument  having  some particular 
dimension,  and then subsequently take the anti-log,  as  part  of  the same derivation,  the result 
should have the same dimension as the original argument. Dimensional analysis does have its 
limits.

The integral definition of the log function has no analytical solution, which is why we simply refer 
to it as log(x) and leave the dirty work to a calculator or a spreadsheet program. However, it may 
be evaluated numerically using one of several series expansions [3] such as:

! (1.5.2)

Several different series may be found in the literature. Different expansions will provide different 
rates of convergence, depending on the value of argument.

Some fundamental logarithm function identities follow:

! (1.5.3)

! (1.5.4)

! (1.5.5)

The calculation of GMD involves integrating the logarithm function over various ranges. Hence, it 
is important to remember that log(r) is undefined for r ≤ 0. Since the calculation is only concerned 

log x =

xZ

1

dt

t

= (x�1)� (x� 1)

2

2

+

(x� 1)

3

3

� (x� 1)

4

4

+ · · · .

log (ab) = log(a) + log(b) .

log (a/b) = log(a)� log(b) .

log (an
) = n log(a) .

– !  –8



with the magnitude of  distances,  we can write  log(|r|).  Often,  the absolute value is  obtained 
automatically such as in the case where r is calculated from cartesian coordinates as  
r = √(x2+y2)  
In cases of integration, it may be necessary to split the integral into two parts:  
∫log(r) dr + ∫log(-r) dr

in order to cover the range of r < 0 separately from the range of r > 0.

While this resolves how to deal with negative values, it still leaves the situation of calculating a self 
GMD which will always involve integration across an area where r  will, at some point, have a 
value of zero. How is this singularity resolved? To understand what happens in this situation, it is 
useful to look at a simpler but equivalent situation, and that is the following integral:

!

In graphical terms (see diagram below), we are taking the area bounded by the x and y axes, the 
function log(x), and the vertical line x = a.

!

Remembering that an integral can be defined as a sum of areas f(x)∆x as ∆x approaches zero, it is 
equivalent to:  

!  

Z a

0
log(x)dx .

lim

�x!0

aP
x=o

log (x)�x .

– !  –9



where we are taking the area from x = 0 to x = a, and the areas are long skinny slices with height 
equal to the value of the function and width equal to ∆x. The value ∆x is made infinitely small. 

The red rectangle denotes the area log(x+½∆x) ⨉ ∆x and is summed as x varies from 0 to a−∆x in 
increments of ∆x. And of course ∆x is made infinitesimal. As x approaches zero, it can be seen that 
log(x) tends towards minus infinity. The area we are concerned with is where x = 0, and thus the 
value of log(½∆x)⨉∆x as ∆x becomes infinitesimal.

!

As ∆x approaches zero the incremental area approaches 0 ⨉ -∞, leaving us to wonder which factor 
wins out: the zero or the minus infinity. To resolve this, we can apply L’Hôpital’s rule which states 
that in the case of a limit involving a quotient of two functions that approaches 0/0 or ∞/∞, then 
the limit is equal to the quotient of the derivatives of the two functions. In this case it is possible to 
rewrite log(½∆x)⨉∆x as log(½∆x)/(1/∆x) which yields the ∞/∞ form, and then:

! (1.5.6)

And so, it is clear that, as x goes to zero, −x⁄2 also goes to zero. Therefore, there is no singularity in 
the integral due to log(0). This is perfectly logical in the context of GMD calculations, because it is 

lim

x!0+
x log

✓
x

2

◆
=

d

dx

log

✓
x

2

◆

d

dx

x

�1

=

1

2x

�x

�2
=

�x

2

2x

=

�x

2

.

– !  –10



saying, essentially, that when two points have zero distance separating them, their mean distance 
is zero, not minus infinity. In fact using the same analysis, it can be shown that

! (1.5.7)

for any k > 0 and n > 0, including fractional powers.

The zero limit can be illustrated by plotting the formula, x log(x):

!

In this graph, the smallest value of x that was calculated and plotted is 10−8, and it can readily be 
seen that as x gets closer to zero, the value of x log(x) clearly tends to zero. Having resolved this 
issue,  we can safely  proceed to  calculate  GMD integrals  with no further  worries  about  log  (0) 
singularities.

Following are the solutions to several integrals [3] involving the logarithm function which will 
prove useful in the upcoming derivations:

! (1.5.8)

! (1.5.9)

! (1.5.10)

The next  few sections  will  give  several  examples  of  the  calculation of  GMD for  some simple 
shapes.

lim

x!0+
x

n

log(kx) = 0 .

Z
x log (x)dx =

x

2

2

log (x)� x

2

4

.

Z
log (a + bx)dx =

a + bx

b

log (a + bx)� x .

Z
x log (a + bx)dx =

b

2
x

2 � a

2

2b

2
log (a + bx) +

ax

2b

� x

2

4

.

– !  –11



Part 2 - Analytical Calculation of Simple Shapes

2.1 GMD of two co-linear lines of equal length

The following diagram shows two co-linear lines of length s with the first line’s leftmost point at 
the origin (for convenience), and the second line offset by a distance r.

!

If Py is a point on the first line located at a distance y from the origin, and Px is a point on the 
second line located at a distance x from the origin, then the distance between these points is (x − y). 
To  calculate  the  GMD,  we  take  the  sum  of  the  logarithms  of  the  distance  between  every 
combination of points and divide by the length of the first line and then divide again by the length 
of the second line. The result is the logarithm of the GMD. Hence:

log(g) = 1/s x 1/s x ∑∑log(xi-yj)

Because there is an infinite number of points on each line, the formula for the GMD between the 
two lines becomes a double integral:

! (2.1.1)

where x is a distance over the right line segment and y is a distance over the left line segment.

log (g) =

1

s

2

r+sZ

r

sZ

0

log (x� y)dy dx .

– !  –12



Evaluating the first integral with respect to y, using the integral formulae given in the previous 
section, we get:

! (2.1.2)

Before doing the second integration, it’s a good idea to split the terms into separate integrals rather 
than trying to deal with the entire integral, which would quickly become very messy. Therefore we 
now have:

! (2.1.3)

where:

!

Additionally, we will split the terms of A into sub-terms A1 and A2:

!

log (g) =

1

s

2

r+sZ

r


(y � x) log (x� y)� y

�s

0

dx

=

1

s

2

r+sZ

r


(s� x) log (x� s)� s

�
�


�x log (x)

�
dx

=

1

s

2

r+sZ

r

(s� x) log (x� s)� s + x log (x) dx .

log (g) =

1

s

2

✓
r+sR
r

A dx�
r+sR
r

B dx +

r+sR
r

C dx

◆
.

A = (s� x) log (x� s) = s log (x� s)� x log (x� s)

B = s

C = x log (x) .

A1 = s log (x� s)

A2 = x log (x� s) .

– !  –13



Evaluating these integrals one by one:

!

!

r+sZ

r

A1 dx =

r+sZ

r

s log (x� s) dx

=


s(x� s) log (x� s)� sx

�r+s

r

=


s(r + s� s) log (r + s� s)� s(r + s)�

�
�


s(r� s) log (r � s)� sr

�

= sr log (r)� sr � s

2 � (sr � s

2
) log (r � s) + sr

= sr log (r)� (sr � s

2
) log (r � s)� s

2
.

r+sZ

r

A2 dx =

r+sZ

r

x log (x� s) dx

=


x

2 � s

2

2

log (x� s)� sx

2

� x

2

4

�r+s

r

=


(r + s)

2 � s

2

2

log (r + s� s)� s(r + s)

2

� (r + s)

2

4

�

�

r

2 � s

2

2

log (r � s)� sr

2

� r

2

4

�

=

✓
r

2

2

+ sr

◆
log (r)� sr � 3s

2

4

� r

2

4

+

(s

2 � r

2
)

2

log (r � s) +

sr

2

+

r

2

4

=

✓
r

2

2

+ sr

◆
log (r)� sr

2

� 3s

2

4

+

(s

2 � r

2
)

2

log (r � s) .

– !  –14



Combining the above A1 and A2 integrals:

!

The B integral is mercifully simple:

!

And finally, the C integral:

!

r+sZ

r

A dx =

r+sZ

r

A1 �A2 dx

= sr log (r)� (sr � s

2
) log (r � s)� s

2

�
✓

r

2

2

+ sr

◆
log (r)� sr

2

� 3s

2

4

+

(s

2 � r

2
)

2

log (r � s)

�

= sr log (r)� (sr � s

2
) log (r � s)� s

2 �
✓

r

2

2

+ sr

◆
log (r) +

sr

2

+

3s

2

4

� (s

2 � r

2
)

2

log (r � s)

=

�r

2

2

log (r)�
✓

sr � s

2
+ r

2

2

◆
log (r � s)� s

2

4

+

sr

2

.

r+sZ

r

B dx =
r+sZ

r

s dx =

sx

�r+s

r

=
⇥
s(r + s)

⇤
�

⇥
sr

⇤
= sr + s

2 � sr = s

2
.

r+sZ

r

C dx =

r+sZ

r

x log (x) dx

=


x

2

2

log (x)� x

2

4

�r+s

r

=


(r + s)

2

2

log (r + s)� (r + s)

2

4

�
�


r

2

2

log (r)� r

2

4

�

=

✓
sr +

r

2
+ s

2

2

◆
log (r + s)� r

2

2

log (r)� s

2

4

� sr

2

.

– !  –15



At last, combining all the terms:

!

And so, we have derived the GMD formula for two equal co-linear lines:

!

…(2.1.4)

This is equivalent to formula (130) given by Rosa and Grover [4](page 168).

We might be tempted to set r = 0 in order to superimpose the two lines, and thus get the self GMD 
of a line. However, this fails, because the argument of the log function in the second term goes 
negative, resulting in an undefined value.

There is also a singularity in the case of s = r, i.e., the point where the end of the first line coincides 
with the start of the second line. In that case, the argument of the log function in the second term is 
equal to zero, and the log term goes to −∞. However, the factor outside log function goes to zero, 
and it forces the term to zero (as with the discussion of limits in the previous section). Hence, the 
second term may be eliminated in the case where s  =  r,  and for two equal co-linear lines just 
touching, we get:

! (2.1.5)

log (g) =

1

s

2

 r+sZ

r

A dx�
r+sZ

r

B dx +

r+sZ

r

C dx

�

=

1

s

2


�r

2

2

log (r)�
✓

sr � s

2
+ r

2

2

◆
log (r � s)� s

2

4

+

sr

2

� s

2

+

✓
sr +

r

2
+ s

2

2

◆
log (r + s)� r

2

2

log (r)� s

2

4

� sr

2

�

=

1

s

2

✓
sr+

r

2
+ s

2

2

◆
log (r + s)�

✓
sr� r

2
+ s

2

2

◆
log (r � s)�r

2
log (r)� 3s

2

2

�
.

log (g) =

1

s2

✓
sr+

r2
+ s2

2

◆
log (r + s)�

✓
sr� r2

+ s2

2

◆
log (r � s)�r2

log (r)� 3s2

2

�
.

log (g) =

1

s2

✓
sr +

r2
+ s2

2

◆
log (r + s)� r2

log (r)� 3s2

2

�

= log(4s)� 3

2

) g = 0.8925s

– !  –16



One can also use the result of the first integration, above, to find the GMD from a line to a co-linear 
point. 

!

It’s simply a matter of substituting into the the result of the first integral, the distance a between 
the point and the line (and adjusting signs), which then gives:

! (2.1.6)

In the case of a point located exactly at the end of a line, i.e., a = 0, then the last term disappears (as 
previously explained), and the right hand side of the formula simplifies to:

! (2.1.7)

Hence, the GMD of a point at the end of a line to the line itself is:

! (2.1.8)

Before moving on to the next example, something should be said about the practical difficulty in 
working through the  above derivation.  Even though this  example  has  dealt  with very simple 
shapes, and even though the integrals themselves have straightforward solutions, nevertheless, the 
number of terms that are generated during the derivation, make it a rather daunting task. The 
probability  of  committing  errors  during  the  evaluation  and  subsequent  simplification,  is 
enormous.  (Software packages which perform symbolic  mathematical  operations are  available. 
However, they can be costly, and therefore are unavailable to many people. There are also free 
symbolic math packages such as Maxima, but still, they can be rather unwieldy to use for various 
reasons.) The method which was used here, is described in Appendix B.

– !  –17



2.2 GMD of a Line from Itself (Self GMD of a line)

The two lines of  length s  from the previous example are now superimposed as shown in the 
following diagram. The line’s leftmost point is again at the origin.

!

Px and Py are two points both located on the line segment at distances x and y, respectively, from 
the origin. The distance between points Px and Py is |x−y|.

We will begin by calculating the GMD of point Px to the entire line. Hence:

! (2.2.1)

The  variable  x  is  held  constant,  and the  variable  of  integration  is  y.  The  requirement  for  the 
absolute value of the log function argument poses a minor problem. It is necessary to split the 
integral into two separate integrals: the first to handle the range 0 ≤ y ≤ x, and the second to handle 
the range x ≤ y ≤ s:

! (2.2.2)

log (g) =

1

s

sZ

0

log |y � x| dy .

log (g) =

1

s

xZ

0

log (x� y) dy +

1

s

sZ

x

log (y � x) dy .

– !  –18



This ensures that the argument of the log function will never be negative. These integrals can be 
solved using the integral formulae given previously.

! (2.2.3)

which is the formula for the GMD of a point on a line to the line itself.  The symmetry of the 
formula is immediately apparent: a point located at a distance x from either end of the line will 
have exactly same GMD, just as we would expect.

Now, integrating a second time from 0 to s with respect to x and multiplying by 1/s, we will get 
the self GMD of the line. 

! (2.2.4)

Unfortunately, the second integration gets rather messy. So, as was done in the case of the GMD of 
two co-linear lines, we will split the formula into terms A, B, C, etc., integrate them separately, and 
then add them back together. Thus:

!

And term B will be split into B1 and B2:

!

log (G) =

1

s


(y � x) log (x� y)� y

�
x

0

+

1

s


(y � x) log (y � x)� y

�
s

x

=

1

s

�
(x� x) log(x� x)� x

�
�

�
�x log(x)

�

+

�
(s� x) log(s� x)� s

�
�

�
(x� x) log(x� x)� x

��

=

1

s

⇥
(x log(x)� x) + ((s� x) log(s� x)� s + x)

⇤

=

1

s

⇥
x log(x) + (s� x) log(s� x)� s

⇤

log (g) =

1

s

⇥ 1

s

sZ

0

x log(x) + (s� x) log(s� x)� s dx .

A = x log(x)

B = (s� x) log(s� x)

C = s .

B1 = s log(s� x)

B2 = x log(s� x) .

– !  –19



Integrating the individual terms:

!

!

!

sZ

0

A dx =

sZ

0

x log(x) dx =


x

2

2

log (x)� x

2

4

�s

0

=

s

2

2

log (s)� s

2

4

.

sZ

0

B1 dx =

sZ

0

s log(s� x) dx = s

sZ

0

log(s� x) dx

= s


(x� s) log (s� x)� x

�s

0

= s

�
(s� s) log (s� s)� s

�
�

�
(0� s) log (s� 0)� 0

��

= s

⇥
s log (s)� s

⇤

= s

2
log (s)� s

2
.

sZ

0

B2 dx =

sZ

0

x log(s� x) dx

=


x

2 � s

2

2

log (s� x)� sx

2

� x

2

4

�s

0

=

�
s

2 � s

2

2

log (s� s)� s

2

2

� s

2

4

�
�

��s

2

2

log (s)� 0

2

� 0

4

��

=

�
�s

2

2

� s

2

4

�
�

��s

2

2

log (s)

��

=

s

2

2

log (s)� 3

4

s

2
.

– !  –20



!

!

Now recombining the terms and simplifying:

! (2.2.5)

Taking the anti-log of both sides we get:

! (2.2.6)

which is the well known formula [4](page 167) for the self GMD of a straight line of length s.

sZ

0

B dx =

sZ

0

B1 dx�
sZ

0

B2 dx

=

✓
s

2
log (s)� s

2

◆
�

✓
s

2

2

log (s)� 3

4

s

2

◆

=

s

2

2

log (s)� 1

4

s

2
.

sZ

0

C dx =
sZ

0

s dx =

sx

�s

0

= s

2 � 0

= s

2
.

log (g) =

1

s

2

 sZ

0

A dx +

sZ

0

B dx�
sZ

0

C dx

�

=

1

s

2

✓
s

2

2

log (s)� s

2

4

◆
+

✓
s

2

2

log (s)� s

2

4

◆
�

✓
s

2

◆�

=

1

s

2

✓
s

2
log (s)� 3

2

s

2

◆

= log (s)� 3

2

.

g = elog (s)� 3
2

= elog (s) ⇥ e�
3
2

= se�
3
2

= 0.22313s .

– !  –21



Further GMD formulae for straight lines are given by Gray [5], including the case of parallel lines 
of equal length. By means of additional integrations, he then expands this to find the GMD of 
rectangles (of which squares are a special case). Gray’s derivation is presented in good detail and is 
recommended reading. 

Derivations of the GMD for circles and circular areas are given by Gray [5] and in more detail by 
Seneff [6]

– !  –22



Part 3 - Calculation of GMD using numerical methods

3.1 The Monte Carlo Method

From the previous section, it can be seen that the derivation of formulae for GMD for even the 
simplest shapes can get quite involved. For more complex shapes, it may be more practical to use 
numerical methods to determine GMD. The Monte Carlo method is suitable for this, and can find 
the GMD of complex shapes to useable accuracies with relatively little computing power. These 
methods can also be used to check analytical GMD derivations. The Monte Carlo method involves 
the generation of random data points in the object under consideration which are then used to 
calculate the desired result. This is repeated many times with more random data points, and the 
results are averaged to produce a good approximation of the true value.

For the case of the self GMD of a straight line, the method is almost trivial. Simply generate two 
random numbers in the range from 0 to 1 (representing random points on a line of length = 1), take 
the logarithm of the absolute value of their difference and then repeat this many times, keeping a 
running total of the result of each iteration. Finally, divide the total by the number of trials and take 
the exponential. The program code is even shorter than this brief explanation:

  N = 1000000000
  Sum = 0
  For i = 1 to N
    Sum = Sum+log(abs(Rnd()-Rnd()))
  next  
  GMD = exp(Sum/N)
  Print GMD

One quick run of the program immediately verifies the value of 0.22313, as was derived in the 
previous section.

The accuracy of the Monte Carlo method is approximately proportional to the square root of the 
number  of  random samples.  Therefore,  to  get  an  improvement  in  accuracy  of  one  additional 
significant digit, the number of random samples must be increased by a factor of 100. So, although 
the method is usually very simple to implement, it may require a lot of computing power if more 
than five significant figures are required in the result.

– !  –23



3.2 The GMD of a Triangle

For  a  slightly  more complicated example,  suppose we wish to  find the self  GMD of  the  area 
enclosed by an equilateral triangular. (Doing a search of the technical literature, it appears that no 
one has investigated the GMD of a triangular area, making this exercise somewhat worthwhile.) In 
the physical world, an analogous methodology might be as follows:

1. Draw an equilateral triangle on the wall.

2. Throw darts at the wall randomly, until two of the darts fall within the bounds of the triangle.

3. Measure the distance between the points where the two darts landed. Take the logarithm of this 
distance, and record it.

4. Repeat steps 2 and 3 many many many times.

5. Calculate the total of the recorded log(distance) measurements, and then divide this total by the 
count of measurements. Take the anti-log of this value. The result will be, approximately, the 
self GMD.

There are two primary requirements for this method to produce acceptable results:

1. The darts must have an equal probability of hitting any spot on the triangular area. That is, the 
x  and y  coordinates  of  the  dart  positions  must  have a  uniform random distribution.  (This 
requires  very  special  dart  playing  skills,  which  are,  unfortunately,  disadvantageous  for 
tournament play.)

2. Sufficient trials must be conducted in order to average out the random noise.

To get reasonable results, we likely will want to throw several million darts. Therefore, it may be 
more appealing to give this job to a computer.

Most  computer languages provide a random number generating function,  typically generating 
numbers in the range 0 ≤ NR < 1, where NR is the random number. Assuming that the random 
number function produces uniformly distributed random numbers , we must make sure that we 3

don’t subsequently manipulate them in such a way that we render them non-uniform, while fitting 
them into the test shape that we are analyzing. A reliable method is to place the shape inside a 
bounding rectangle. Then, generate a random x coordinate scaled to the width of the bounding 
rectangle, and a random y coordinate scaled to the height of the bounding rectangle. The random 
point will then fall within the bounding rectangle. Then, it must be determined if the resulting 
random point also falls inside the bounds of the test shape. This is accomplished by applying the 
appropriate geometric formulae which define the test shape. If the point does not fall within the 
bounds of the test shape, then it is discarded and the process is repeated.

 Random number generators that are built into spreadsheets and various programming languages tend to be deficient, 3

and begin to display non uniform behaviour for very large sample sizes. For this reason it is a good idea to implement 
an independent and well proven pseudo-random number generator routine. Eg., the Wichman and Hill algorithm [9].

– !  –24



Continuing with the example of an equilateral triangle, refer to the diagram below. Let’s assume a 
side length of one, and one of the sides lying on the x axis, leftmost vertex at the origin, and the 
rightmost  vertex  at  x  =   1,  y  =   0,  and  then  it  follows  that  the  third  vertex  is  at  x  =   0.5, 
y = 0.866 = sin(60°). The triangle is shown in red. The bounding rectangle, shown in green, will 
have a width of 1 and a height of 0.866.

!

The three lines forming the triangle are defined as:

y1 = 0 (3.2.1)

y2 = 2x sin(60°) = 1.732x (3.2.2)

y3  = (2 − 2x) sin(60°) = 1.732 − 1.732x (3.2.3)

To generate the random points, the x coordinate random number, nx, is scaled to the range of 0..1, 
and the y coordinate random number ny, is scaled to the range of 0..0.866. To determine whether 
the random point is within the bounds of the triangle, the following conditions must be true:

ny ≤ 1.732 nx

ny ≤ 1.732 − 1.732 nx

– !  –25



There is no need to test that the point lies on or above the line y = 0 because the y coordinate 
random number will always be greater than or equal to zero. Following, is the listing for a BASIC 
program which performs the calculation.

'calculate self GMD of equilateral triangle with side length equal to 1
a = sin(60/180*pi) 'Height (altitude) of triangle
b = 1 'Base of triangle
N = 1000000000 'Number of random pairs of points inside triangle
Sum = 0 'Sum of all log(distance) calculations
Npt = 0 'Count of all random points generated
For i = 1 to N
  'Generate test point T
  do
    'Generate point tx,ty that falls inside the circumscribed rectangle.
    tx = rnd*b
    ty = rnd*a
    tya = 2*a*tx 'eqn of first bounding line
    tyb = 2*a-2*a*tx 'eqn of second bounding line
    Npt = Npt+1
    'Test whether the point falls within the
    'bounds of the triangle, and repeat until true
  loop until (ty< = tya and ty< = tyb)
  'Now generate the second test point S
  do
    sx = rnd*b
    sy = rnd*a
    sya = 2*a*sx
    syb = 2*a-2*a*sx
    Npt = Npt+1
  Loop Until (sy< = sya and sy< = syb)
  'Calculate the distance between points T and S,
  ' then take the log and add to the sum
  Sum = Sum+log(Sqrt((sx-tx)^2+(sy-ty)^2))
next
'Calculate GMD from the sum of Log(distance)
GMD = exp(Sum/N)
'Accuracy check based on comparison of Monte Carlo
' area calculation compared to analytical area.
'Monte Carlo area is equal to inside/outside points
' ratio (2N/Npt) times bounding rectangle area.
'The bounding rectangle area is a*b
Aarea = a*b*2*N/Npt
'True area calculation
Tarea = 0.5*a*b

Referring to the last few lines of the program, to get an indication of the accuracy of the Monte 
Carlo calculation, we can keep count of the total number of points that fall  inside the triangle 
compared to the total number of points generated. The ratio will approximately equal the ratio of 
the area of the triangle to the area of the rectangle—the approximation improving as the number of 
test  points increases.  The true ratio in the present example will  be exactly ½.  By checking the 
number of significant digits that are in agreement with this value, we can get a reasonable estimate 
of the number of significant digits of the GMD.

– !  –26



The following figure shows a plot of points from a program run of 108 random points. The points 
falling inside the triangular area are green, and the remainder are red. (Only a fraction of the total 
points have been plotted.)

!

In a subsequent program run, the number of points falling inside the triangle was 20000000000 out 
of  a  total  of  39999997361  generated  points,  suggesting  an  accuracy  of  about  seven  significant 
figures. The self GMD value produced in the same run, was 0.30838221. It should then be safe to 
assume a self GMD of perhaps six significant figures, or 0.308382. Hence, we can conclude that the 
self GMD of an equilateral triangular area with a side length s, will be 0.308382s.

g = 0.308382 s (3.2.4)

Naturally,  having arrived at the self  GMD value of 0.308382, we must immediately be curious 
whether this happens to be the anti-logarithm of a simple fraction, as the factor would be in the 
case of  a  circular  area (−1⁄4)  or  a  straight  line (−3⁄2).  Alas,  the natural  logarithm of  0.308382 is 
−1.17642,  which  doesn’t  suggest  any  obvious  simple  fraction.  The  nearest  fraction  with  a 
reasonably small denominator is −20⁄17 = −1.17647. It’s likely unwise to draw any conclusions about 
a simple fraction in this case.

3.3 The GMD of an Elliptical Area

As a another example, we can consider the case of the self GMD of a circle or ellipse. The program 
code is virtually the same as the case of the triangle. The only difference being the formulae of the 
shape’s bounding lines.  For an ellipse with a horizontal axis of 2b  and vertical  axis of 2a,  the 
formula for the upper half of the curve is:

y = a √(1 − (x/b)2) (3.3.1)

And the formula for the lower half of the curve is:

y = −a √(1 − (x/b)2) (3.3.2)

– !  –27



We will depart from the usual convention of referring to the ellipse axes as “major“ and “minor” 
and use “horizontal” and “vertical” instead. The horizontal axis may be either the major or minor 
axis, and we will define the horizontal axis to be the line in which the ellipses will be offset.

If a = b, then the figure will be a circle. If a≠b, then the figure will be an ellipse. The program code 
follows:

' Monte Carlo method for determining the Self or Mutual GMD of ellipses
a = 3 'vertical semi-axis
b = 1 'horizontal semi-axis
x0 = 0 'horizontal offset of the conductors (zero for self GMD)
y0 = 0 'vertical offset of the conductors (zero for self GMD)
N = 1000000000 'Number of random pairs of points inside ellipse to be evaluated
Npt = 0 'Count of all random points generated
Sum = 0 'Sum of all log(distance) calculations
For i = 1 to N
  'Generate test point T
  do
   'Generate point tx,ty that falls inside a circumscribed rectangle.
    tx = rnd*2*b-b
    ty = rnd*2*a-a
    tya = a*sqrt(1-(tx/b)^2) 'eqn of upper bound of ellipse
    tyb = -tya 'lower bound of ellipse
    Npt = Npt+1
    'Test whether the point falls within the
    'bounds of the ellipse; repeat until true
  loop until (ty< = tye and ty> = tye1)
  'Generate test point S
  do
    sx = rnd*2*b-b
    sy = rnd*2*a-a
    sya = a*sqrt(1-(sx/b)^2)
    syb = -sya
    Npt = Npt+1
  Loop Until (sy< = sye and sy> = sye1)
  'Calculate the distance between points T and S,
  ' then take the log and add to the sum
  Sum = Sum+log(Sqrt((sx-tx+x0)^2+(sy-ty+y0)^2))    
next
'Calculate GMD from the sum of Log(distance)
GMD = exp(Sum1/N)
'Accuracy check based on comparison of Monte Carlo
‘ area calculation compared to analytical area
'Monte Carlo area is equal to inside/outside points 
‘ ratio (2N/Npt) times bounding rectangle area.
'The bounding rectangle area is 2a*2b
Aarea = 8*a*b*N/Npt
'True area of ellipse
Tarea = pi*a*b
End

The analytical formula for the self GMD of an ellipse is given by Grover [2] (page 21) as 

g = 0.5(a+b) e−¼ (3.3.3)
– !  –28



A quick program run verifies agreement with this formula. 

Grover is a bit ambiguous about whether this formula is supposed to apply to an elliptical area, or 
an elliptical line, or both. It is, in fact, the formula for an elliptical area as the above program run 
has demonstrated, and not for the GMD of an elliptical line. Since a circle is a degenerate form of 
an ellipse, we see that the formula will give the correct value for a circular area when a = b. But 
since the self GMD of a circular line is simply equal to its radius, Grover’s formula is obviously not 
applicable in the case of the elliptical line. Alas, developing a numerical method to find the GMD 
of an elliptical  line requires a more sophisticated Monte Carlo simulation than what has been 
discussed so far, but will be addressed in a later section.

In addition to the calculation of self GMD, the Monte Carlo method can of course be applied, with 
almost no additional effort, to the calculation of GMD between two shapes external to each other. 
In fact, it is as simple as setting non-zero values to the variables x0 and y0 in the above program 
code. These variables are the horizontal and vertical offsets of the shapes being analyzed.

Now, whereas the case of self GMD is dependent only upon the geometry of the shape, and it 
scales linearly with its size, the GMD between two objects is often a non linear function of the 
distance separating them, and also varies depending upon the relative orientation of the objects. 
The case of two circles is a notable exception, because the GMD is simply the distance between 
their  centres,  and  a  circle  is  identical  with  any  orientation.  But  for  non-circular  shapes,  the 
calculation must performed for every different spacing and orientation of the objects. It may be 
possible to analyze the data generated by these calculations, and then derive an empirical formula 
that predicts the GMD, but there is no guarantee that this will be a simple formula. If we are using 
this method to determine the GMD of only a small group of conductors, then it doesn’t matter too 
much, because there are only a few GMD values that need to be calculated, and we can calculate 
each of them directly using the Monte Carlo method. When dealing with a large number of evenly 
spaced  conductors,  the  most  practical  solution  may  be  to  calculate  the  cases  for  adjacent 
conductors, and then for 1 ⨉, 2 ⨉, 3 ⨉ conductor pitch separations, and so on up to, perhaps, 5 ⨉ 
conductor  pitch.  These  can  be  stored  in  a 
lookup  table,  and  used  as  required  in  an 
inductance  calculation.  For  any  spacing 
greater than what is in the table, the centre to 
centre  conductor  spacing  can  be  used,  since 
the  true  GMD  will  quickly  converge  to  this 
value  as  the  spacing  becomes  significantly 
larger than the conductor mean diameter.

For example, the table to the right shows the 
results of calculating the GMD of ellipses with 
a  horizontal  semi-axis  of  0.5  and  a  vertical 
semi-axis of 1.0, for offsets ranging from 0 to 
20. The GMD for a zero offset is the self GMD 
of a single ellipse.

– !  –29

a b offset GMD

0.5 1 0 0.5840898753
0.5 1 2 1.8946815473
0.5 1 4 3.9520103933
0.5 1 6 5.9684639214
0.5 1 8 7.9762391919
0.5 1 10 9.9810447569
0.5 1 12 11.9845009509
0.5 1 14 13.9863041625
0.5 1 16 15.9881743067
0.5 1 18 17.9895128001
0.5 1 20 19.9905701963



For each calculation, 200 million points were generated, 
and it is probably safe to rely on five significant figures of 
the GMD results.

It  can be seen that  as  the offset  increases in value,  the 
GMD quickly converges towards the offset value. If we 
are to come up with an empirical function, based on the 
offset, it seems reasonable to use the actual offset value as 
the  principal  term,  and  then  determine  an  additional 
correction term to adjust the final value. We will use the 
function  f(x,u)  for  the  correction  term,  where  x  is  the 
offset  (which  is  measured  from centre  to  centre  of  the 
shapes), and u is a shape factor (see diagram to the right, 
and  description  below).  Hence  GMD  =  x  +   f(x,u).  We 
must be careful, because we must find the correction term 
by taking the difference between the Monte Carlo GMD 
value and the offset. This difference becomes very small 
very  quickly  as  the  offset  value  increases,  which  can 
result in noisy data for large offsets. Fortunately, this is 
the part of the range where the correction term will tend 
towards zero and has little significance.

The above table lists the GMD only for ellipses with an a⁄b 
shape factor of 0.5. An empirical formula must be general 
enough to accommodate different shape factors.

We will define the variable u to be the shape factor and it will be the ratio of the vertical semi-axis 
to the horizontal semi-axis. Hence u = a⁄b.  

– !  –30



The Monte Carlo program was run for shape factors varying from 0.125 to 8.0,  and the GMD 
correction factor is plotted in the following graph:

!

The leftmost point of each curve corresponds to two ellipses, of the specified shape factor, just 
touching each other. It can be seen that the correction term is largest at this point and then decays 
to zero as the spacing increases.

Developing a fitting function of more than a single argument is usually a major undertaking. It’s 
worthwhile to look at developing a function of one variable while the other is held fixed. We can 
fix either the shape factor u or the offset x. Let us look at developing a function with a fixed offset x 
and variable shape factor u. The offset will be fixed at 2b (double the horizontal semi-axis) so that 
the two ellipses will be just touching each other in every case. The rationale for proceeding in this 
order is that the most critical GMD values are the ones for the closest spacings, and if we develop a 
formula for  closely  spaced ellipses  first,  and then later  develop a  secondary decay  function to 
correct for spacing, then it is much easier to ensure that the overall function is most accurate at the 
minimum offset value.

– !  –31



Therefore, let us re-plot the above data to show the required correction for different values of u for 
a fixed offset of 2b. We will include a larger range of shape factors varying from 10−13 to 2000. This 
larger range allows us to get a better idea of any possible asymptotic behaviour.

!

The  graph  shows  what  may  be  a  horizontal  asymptote  near  zero,  and  the  curve  appears  to 
asymptotically approach an inclined straight line at large values of u. The inclined asymptote is 
much more obvious when the graph is redrawn with a linear horizontal axis:

!
– !  –32



Similarly the horizontal asymptote is more obvious on a linear plot restricted to small values of u:

!

Further analysis of the data confirms the asymptotes. The horizontal asymptote is, in fact, at a 
value of about −0.149261, and the inclined asymptote has a slope of 0.38940. The existence of and 
the values of these asymptotes can be easily explained.

In the case of very large shape factor values (see figure at left), the horizontal component of 
the distance between points on the ellipses becomes insignificant compared to the vertical 
coordinate.  The  two  ellipses  begin  to  approximate  vertical  lines  which  are  nearly 
superimposed. As such, the GMD begins to approximate the self GMD of an ellipse of the 
same shape factor. That is:

g = 0.5(a+b) e-¼ 

But because u = a/b, (hence, a = bu):  
g = 0.5(ub+b) e-¼ 

or  
g = 0.5b(u+1) e-¼

Note when u is very large, u+1≃u and asymptotic nature is apparent. At large values of u, we have 
an asymptote with a slope of 0.5e−¼ or 0.38940, just as the data show.

– !  –33



The horizontal asymptote for small values of u can be explained in a similar way. Very small values 
of u, indicate two extremely flat looking ellipses located end to end (see diagram below).

!

Because they are so flat, these appear much like two co-linear lines of unit length just touching. We 
might think therefore, that they would approach the value calculated for touching co-linear lines 
previously derived as 2⨉4e–3/2 = 1.7850. (The additional factor of 2 accounts for the fact that the 
closest spacing is 2⨉b.) Instead they approach a limiting GMD value of 1.8507. The reason for this 
is  that  even though the ellipses appear to become straight horizontal  lines,  the distribution of 
points is not linear, as they would be in the case of lines. Instead, the points are more dense in the 
centres of the ellipses, and so this results in the slightly larger limiting value of GMD. However, the 
horizontal distribution of points remains the same regardless of the shape factor, and so a limiting 
value  is  reached  at  small  values  of  u,  when  the  vertical  coordinate  of  the  points  becomes 
insignificant  compared to  the  horizontal  coordinate.  Subtracting the  fixed offset  of  2  from the 
limiting GMD value of 1.8507, gives the asymptote value of −0.1493.

It is encouraging to find that we are dealing with a doubly asymptotic function. We can come up 
with a simple fitting function that gives these same asymptotes, and then we only have to worry 
about minimizing error in the intermediate region. A function which accomplishes this is:

fv(u) = k0u+k1+k2/(1+k3u)

k0 is the slope of the inclined asymptote and has a value of 0.38940 as previously determined.

The sum of k1+k2 is equal to the horizontal asymptote of −0.1493.

The values of k2 and k3 determine the shape of the curve in the transition region. It is also possible, 
if necessary, to add additional terms to the denominator of the last term to help minimize error. It 
turns out that additional terms are unnecessary, because the existing terms can be optimized to 
give a peak error of no more than 0.6%. The optimized values are:
k0 =   0.38940
k1 = −0.71245
k2 =   0.56397
k3 =   0.73139

Thus, the correction term is:

fv(u) = 0.38940u − 0.71245 + 0.56397/(1+ 0.73139u)

And the complete GMD formula for touching ellipses is:

g = 2 + [ 0.3894u − 0.71245 + 0.56397/(1+ 0.73139u)] (3.3.2)

To get the complete correction term f(x,u), we must combine fv(u) with another function that is 
dependent on the offset x. We will now introduce a decay function, fx(x), to account for variable 

– !  –34



offset values. This function must have a value of 1 at x = 2 (the minimum offset) and then decrease 
asymptotically towards zero as x becomes large. A simple function meeting the requirements is:

fx(x) = k4/(k5+k6x)

which, when combined with fv(u), gives a complete formula for the correction term:

f(x,u) = [ k0v + k1 + k2/(1+k3v)] ⨉ [k4/(k5+k6x)]

And ultimately, the complete normalized GMD formula:

g = x + [ k0v + k1 + k2/(1+k3v)] ⨉ [k4/(k5+k6x)]

The function fx(x)  is  known as a  rational  function because it  is  the ratio of  two polynomials., 
although this is a fairly trivial example. The polynomial in the numerator is simply the constant k4, 
and  the  polynomial  in  the  denominator  is  k5+k6x.  Neither  are  overly  complicated.  However, 
rational functions can have a polynomial of any degree in both the numerator and denominator, 
and  because  they  can  be  tailored  to  fit  a  wide  variety  of  curves  they  are  popular  as  fitting 
functions. (They will be employed several more times as fitting functions in later sections.) It turns 
out that the simple form given here will fit the data just as well as higher degree polynomials.

The optimum values for the constants are:
k4 = 3.55610
k5 = 2.54114
k6 = 0.49887

Adding more terms of higher power gives no improvement beyond what this basic function gives. 
These constants give a peak error of 1.78% in the overall GMD value, which is fair, considering that 
fv(u) and fx(x) are independent of each other and the functions are very simple. Unfortunately, the 
worst case error occurs close to the minimum spacing where it does the most harm. Therefore, it’s 
worth  putting  a  bit  more  effort  into  the  development  of  a  decay  function  with  better 
characteristics.

Looking at the original set of curves, it can be seen that there is a point of inflection for each curve 
which occurs at a different position. The varying location of this inflection point makes it difficult 
to apply a simple decay function based only on the offset distance. It appears that the inflection 
point occurs approximately at x = u. It may be beneficial therefore to shift the argument of the 
decay function by a factor of u. Hence fx(x) now becomes fx(x+k7u). This does give some further 
improvement. In addition, once the constants k4 through k7, have been optimized, we can then do 
a final re-optimization all of the constants k1 through k7, and during the optimization, weight the 
optimizer’s error criteria so that errors at the lowest offsets have the most influence on the final 
result. During this optimization, it is also useful to rearrange the fv(u) function as:

fv(u) = k0u+(k1+k2u)/(1+k3u)

With suitable adjustment of the values k1 and k2, this is completely equivalent to the previous form 
of  fv(u),  but  allows for  more convenient  constant  values.  The constant  k1  is  now equal  to  the 
horizontal asymptote. However, rather than restricting its value to the known asymptote, we will 

– !  –35



adjust  it  in  order  to  improve  the  accuracy  of  the  function  over  the  more  useful  range  of  the 
function, thus sacrificing the correct asymptotic behaviour at very small values of u. However, this 
is somewhat compensated for by the simultaneous optimization of the decay function constants.

Doing the final optimization, we end up with a maximum peak error of about 0.5% and this peak 
error occurs at at more distant offsets than in the earlier optimization. The optimized function and 
the constants are:
g = x + [k0u + (k1 + k2u)/(1+k3u)] ⨉ [k4/(k5+k6(k7u + x))] (3.3.3)
k0 =   0.38940
k1 = −0.0025158
k2 = −0.39042
k3 =   0.0091452
k4 =   32.53253
k5 = −0.05161
k6 =   0.29995
k7 =   0.86873

This is a large number of constants, but the formula itself is fairly simple. Overlaying the values 
produced by the empirical function onto the Monte Carlo calculated data, we get the following 
graph:

!

– !  –36



It can be seen that the approximation is very good at the left side of the graph where the offset is 
less than five times the ellipses’ horizontal semi-axis, but then fails to decay to zero as quickly as 
the true data. Because this is a graph of the correction term only, the effect of the error appears to 
be worse than it is in practice. The overall error becomes a very small percentage of the net GMD 
value once the correction factor is added to the offset (0.5% peak error). Also, the way that GMD is 
used in multi-turn coil inductance calculations will further reduce the total error due to distant 
spacings.  Additional  work could be done to  improve the decay function,  but  it  is  unlikely  to 
provide any significant overall improvement in the final inductance calculations.

It should be remembered that this function has been normalized such that the offset value x  is 
expressed as a multiple of the horizontal semi-axis b. Therefore, x must be calculated by dividing 
the actual offset distance by the horizontal semi-axis of the ellipse, b, and the result of the formula 
must then be multiplied by b to get the true GMD value. It should also be remembered that this 
function cannot be used to find the self GMD (by setting x = 0), as this is well beyond the range of 
the data that were used for fitting the function.

In addition to ellipses, the method developed here should be readily adaptable to the creation of a 
GMD function for other oblong shapes. For example rectangles would be logical candidates, were 
it not for the fact that an analytical rectangle GMD formula already exists.

3.4 The Self GMD of an Elliptical Line

To distinguish between the area enclosed by an ellipse, and ellipse itself (excluding the internal 
area), we will refer to the hollow ellipse as an elliptical line or elliptical locus. In the previous 
section we discussed the GMD of the area enclosed by an ellipse. It was also briefly mentioned that 
a more sophisticated Monte Carlo method would be required for the case of an elliptical line. The 
problem arises when we try to generate uniformly distributed random points on the locus of the 
ellipse (or any curve for that matter). We cannot use the rejection sampling method that we used 
for the triangular and elliptical areas, because the locus has no area and therefore there is zero 
probability that a random point generated in the enclosing area will fall on the locus. We need to 
find another way to drop points randomly on the locus.

For the degenerate case of a circle, the solution is quite simple. We simply use the trigonometric 
parametric equations for a circle:

x = b cos(θ) (3.4.1)

y = a sin(θ) (3.4.2)

where a = b, and θ ranges from 0 to 2π radians.

If we assign to θ, uniformly distributed random numbers in the range of 0 to 2π, then we achieve 
the uniformly distributed points on the circular locus. However, in the more general case where 
a≠b, then we have an ellipse, and this method fails. The diagram below shows what happens when 
we plot points at  equal increments of θ  on a circle (left),  and then on an ellipse (centre) with 
b  =  0.3a.  As the ellipse becomes squashed,  the points  become concentrated towards the ends. 

– !  –37



Hence, if we were to assign uniformly distributed random values to θ, the distribution of points on 
the ellipse would not be uniform. 

!

The figure on the far right, however, shows the desired uniform spacing of points. The fact that 
such a figure exists, with its evenly distributed points, means that there must be a way to achieve 
this distribution. To do this, we need to find a function that takes the distance along the locus as an 
argument,  and returns the corresponding angle θ.  By feeding this  function a set  of  uniformly 
distributed random numbers, we can then apply the resulting values of θ as the parameters of the 
ellipse, to get the uniform point distribution. We will refer to this distance to angle function as the 
mapping function. The inverse of the formula we are looking for, would take the angle θ as the 
argument and return the distance along the locus. This function exists; it is the Incomplete Elliptic 
Integral of the Second Kind E(ϕ,k). We can use this function to generate a dataset of angle and 
length pairs, then create an empirical fitting function for these data that uses the arc length as 
argument and returns the angle, essentially the inverse of E(ϕ,k).

The first step then, is to generate the dataset. Unfortunately, an implementation of the function 
E(ϕ,k) is not readily available—certainly not in Open Office Calc. One of the goals of this work was 
to avoid the use of special math software, but rather, to use simple software such as is available in 
a spreadsheet program, or if necessary, a simple programming language such as BASIC. Of course 
the function E(ϕ,k) could be coded into BASIC, but this is not really necessary in order to generate 
the data. Instead, we simply use a spreadsheet, and the parametric equations for the ellipse to 
generate a list of x and y coordinates for values of θ ranging from 0 to π⁄2, with θ changing in very 
small increments. We can then calculate the length of the arc segments from one increment to the 
next using the formula:

! (3.4.3)
`arc =

p
(xi � xi�1)2 + (yi � yi�1)2 .

– !  –38



Then, by taking the running total of these ℓarc values, we get the total length from the start of the 
locus to the specified point on the curve. This method has the advantage that it can also be used for 
shapes other than ellipses.

We need only generate the data for one quadrant of the ellipse, and then find a fitting function for 
that single quadrant. Because of its symmetry, the data for the other three quadrants can be easily 
determined from the single quadrant data set. Dealing with a single quadrant, makes it easier to 
find a fitting function. A graph of the data for the ellipse with an aspect ratio of u = b⁄a = 0.3 is 
shown below:

!

Incidentally, if we had used an aspect ratio of 1 (a circle), the above graph would be a straight line. 
As the aspect ratio gets smaller, the line becomes more curved.

The arc length is measured from a starting point which we will define to be the point where the 
ellipse crosses the positive x axis. For an aspect ratio of 1 (a circle) where semi-major and semi-
minor axes a = b = 1, the arc length will be equal to the angle in radians. So, for one quadrant the 
arc length is π⁄2. As the aspect ratio decreases, the quadrant arc length decreases until, at an aspect 
ratio of 0, the arc length is equal to the semi-major axis a. For this study we will normalize the 
quadrant arc length to a range of 0 to 1 for all aspect ratios. Hence the horizontal axis on the above 
graph ranges from 0 to 1.

Additionally, the arc will be measured counterclockwise from the starting point. We also define the 
geometry such that, as the aspect ratio becomes smaller, the ellipse is flattened in the x dimension. 
That is, the ellipse becomes tall and skinny. When the aspect ratio is one, the figure is a circle. 
When the aspect ratio is zero, the figure becomes a vertical line. This covers the entire range of 
shapes that the ellipse can assume.

– !  –39



To fit these data, a rational expression of the following form was chosen for the mapping function:

θ = (k1s +k2s2+k3s3+k4s4)/(1+k5s+k6s2+k7s3) (3.4.4)

where s is the length of the arc measured from the starting point and θ is the parametric angle as 
discussed above. This function very likely has more terms than are necessary, but since it serves 
only a temporary purpose, maximum efficiency was not the goal. Optimizing the coefficients was 
done using a  solver  macro in an Open Office spreadsheet.  For  an aspect  ratio  of  u  =  0.3,  the 
optimum coefficients are:

k1 =    1.09677644 
k2 =    0.31383321 
k3 =  −2.92801438 
k4 =    1.52766397 
k5 =    0.29919089 
k6 =  −2.96132963 
k7 =    1.66867001

Of course this gives us a function only for the case where the aspect ratio of the ellipse is equal to 
0.3. Developing a more general empirical function that takes the additional argument of the aspect 
ratio would be a far bigger job than is warranted. Instead, different sets of coefficients k1..k7 were 
obtained for aspect ratios of 0.125, 0.25, 0.3, 0.35, 0.4, 0.5, and 0.75. After looking at the results—in 
particular, the fitting error—additional sets of coefficients were obtained for aspect ratios of 0.02, 
0.03, 0.063, 0.315, and 0.325.

The peak errors for the various sets of coefficients of the fitting function are shown in the graph 
below.

!

– !  –40



It is not surprising to see the higher errors for smaller aspect ratios, because the mapping function 
becomes more curved for smaller ratios, and conceivably harder to fit. However, it is surprising to 
see the second peak at an aspect ratio of 0.25. This may simply be due the solver having difficulty 
finding the best fit in this case. The errors are still quite small however, and are not expected to 
have a significant impact on the final result.

Having created the mapping function,  we can now take a set  of  random numbers,  pass them 
through this function and then use the resulting values of θ to create a set of uniformly distributed 
random points on an elliptical locus.

All this effort to produce a uniform distribution of random points on the locus of the ellipse has 
overshadowed an otherwise simple Monte Carlo algorithm. However, this mapping function is 
crucial,  because without a means to generate uniformly distributed random points,  the Monte 
Carlo method would be unusable.

We can now return to the primary issue. As with the previous calculations, the program code will 
generate  random  points  on  the  elliptical  locus,  then  measure  the 
distance between pairs of them, take the logarithm, sum them, and 
hence,  find  the  geometric  mean.  The  program  code  is  given  in 
Appendix A. With 109 pairs of random points for each run, we get 
the results shown in the table to the right.

These are normalized to a semi-major axis value of 1.0. In addition, 
there are two limiting values that can be included in this list.  We 
know that for an aspect ratio of 1, the ellipse becomes a circle, and 
therefore, its GMD is equal to 1. Also, but not quite as obvious, when 
the aspect ratio goes to zero, the ellipse becomes a line. But unlike 
the case of an elliptical area where the point density never becomes 
linear, in the case of an elliptical locus, it does indeed become linear, 
and we can use the self GMD of a line which is e −3/2 = 0.22313 times 
its length. With a semi-major axis of 1, the ellipse has a length of 2, 
and the GMD in this limiting case becomes 2 ⨉ 0.22313 = 0.44626.

– !  –41

Aspect Ratio GMD

0.020 0.4577052

0.030 0.4636561

0.063 0.4828448

0.125 0.5205759

0.185 0.5571103

0.250 0.5963800

0.275 0.6111260

0.300 0.6258739

0.315 0.6346541

0.325 0.6404787

0.350 0.6549459

0.400 0.6835489

0.500 0.7393943

0.750 0.8727630



Plotting the data from the table along with the two limiting values, we get the following graph:

!

Despite the ordeal of obtaining the uniformly distributed random points,  we see that the final 
result is a nearly straight line.

It  turns  out  that,  while  not  a  perfectly  straight  line,  these  points  can  be  fit  very  well  with  a 
parabolic curve. Doing a least squares fit, the optimized formula for self GMD of an elliptical line 
is:

! (3.4.5)

where u = b/a (the aspect ratio).

The first term is analytical, as previously discussed, while the last two are empirical. The similarity 
between the two empirical coefficients (and considering that 0.615 ≈ 8⁄13) suggests a simpler and 
easier to remember formula: 

% (3.4.6)

gs = [2e�
3
2 + 0.61578u� 0.061591u2]a .

gs =
h
2e�

3
2 + 8

13

⇣
u� u2

10

⌘i
a .

– !  –42



This simplification gives an insignificant increase, from 0.0000448 to 0.0000453, in the total squared 
error, but notably, a small decrease in peak error, from 0.407% down to 0.402%. Hence, this simpler 
formula is recommended.

There may not be much demand for the GMD of an elliptical line . If there was, then either Grover, 4

or one of his contemporaries likely would have come up with an expression for it six decades ago. 
However, the main point is that if we do need to find the GMD of some shape that has not been 
previously analyzed, then we have the means to do it. An elliptical line is a good example of one of 
the more complicated cases. Yet, we are able to analyze it, and come up with a practical expression 
for it.

Appendix A  gives the BASIC program listing for the Monte Carlo calculation of  GMD of the 
elliptical lines discussed here. It consists of a small main program which implements the main part 
of the Monte Carlo simulation, and a subprogram which implements the mapping function. The 
sets of mapping function coefficients for different aspect ratios are readily apparent in the program 
code. It should be noted that this program runs much slower than the program for finding the 
GMD of elliptical areas. This is due to the mapping function which adds a significant number of 
mathematical operations inside the main calculation loop. Even though the earlier program used 
sample  rejection to  obtain  the  uniform distribution and therefore  rejected 21% of  the  random 
points generated, the remaining operations were very few and very efficient.

As previously mentioned, the determination of the constants for the mapping function was done 
using a spreadsheet and a solver macro. The final fitting of the GMD data produced by the BASIC 
Monte Carlo program was also done using a spreadsheet and solver macro. 

 In fact, when calculating the inductance of a coil constructed of round thin wall tubing, and having large pitch, the 4

cross section of the conductor, taken in a plane that passes through the coil axis, will be an elliptical line. The GMD of 
an elliptical line then becomes useful in the analysis of the coil.

– !  –43



Part 4 - Limits of Accuracy of the GMD method

4.1 Self Inductance

It was stated earlier that the GMD principle can be applied to conductor geometries other than 
straight lines as long as the conductor diameter is small relative to the overall conductor length, 
and the radius of curvature is large compared to the cross sectional diameter of the conductor. That 
is a somewhat vague statement, and deserves further discussion. Unfortunately, any research done 
on the limits of accuracy of the application of GMD in inductance calculations, appears to be non-
existent.

In this section, inductance values calculated using the GMD method will be compared with those 
calculated by other methods, in order to determine the point at which the accuracy deteriorates. 
The  simplest  example  for  examining  the  effect  of  conductor  curvature  is  the  inductance  of  a 
circular  loop of  a  conductor  of  finite  diameter.  We will  look  at  what  happens  as  the  ratio  of 
conductor  diameter  to  loop  diameter  is  changed.  The  GMD  method  is  straightforward:  we 
calculate the self GMD of the conductor, and then use that as the axial separation of two filamental 
loops  of  the  same diameter,  and  plug  these  numbers  into  Maxwell’s  loop  mutual  inductance 
formula  [1b].  This  must  then  be  compared  with  a  method  which  does  not  make  the  GMD 
simplification.  One  such  formula  has  been  given  by  Max  Wien  [10],  where  he  integrated  the 
mutual inductance formula twice across the cross section of a round conductor to get a supposedly 
exact  formula.  However,  his  formula  was  later  found  to  have  errors  in  one  of  the  terms.  In 
addition,  he discarded high order  terms,  which renders  the formula unsuitable  for  this  study. 
Other formulae followed Wien's. However, these too contained simplifications where high order 
terms were discarded, again making them unsuitable for use here.

The exact  method is  to  integrate  Maxwell’s  formula across  the cross  section of  the conductor. 
Because the integrand is an elliptic integral, this must be carried out using numerical integration 
techniques.  This  poses  a  bit  of  a  problem,  because  with  numerical  integration,  we  normally 
evaluate and sum a series of rectangular areas or, in the case of a circular area, circular segments. 
Both of these methods are rather cumbersome. We still need to calculate the mutual inductance of 
every possible combination of pairs of these oddly oriented and/or oddly shaped areas, and end 
up having to use the GMD between these areas for lack of any better method. Further complicating 
matters,  there  is  no  formula  for  the  GMD  of  the  oddly  shaped  pieces  in  all  their  myriad 
orientations, necessitating more approximations. We would expect that as the cross sectional area 
is  divided  into  smaller  and  smaller  parts,  that  the  accuracy  would  improve.  Yet,  there  is  no 
guarantee that some systematic error will not manifest itself in the mutual inductance between 
very closely spaced pairs of areas, or especially the self inductance of an area. Nevertheless, this 
method was initially tried, and seemed to give reasonable results despite being computationally 
inefficient. 

On the other hand, by adapting the Monte Carlo method, we replace the potential systematic error 
for random error.  But at  least  the random error should have no particular bias as long as the 
random numbers themselves have no bias. The other advantage is that it is much simpler to code, 

– !  –44



and is computationally much more efficient. Consequently, the Monte Carlo method is used in the 
following discussion.

The  Monte  Carlo  method  assumes  that  the  conductor  is  composed  of  an  infinite  number  of 
infinitesimal filaments. A representative sample of random pairs of these is taken, their mutual 
inductance is  calculated,  and the mean is  taken.  By taking a larger and larger sample we can 
reduce the random error to an acceptable value.  Following is  the BASIC program code which 
implements the Monte Carlo procedure.

Function McL(Rc As Double, dw As Double, yOffset As Double, N As Int64) As double
  ' Calculate Self/Mutual Inductance of Loop Conductor by Monte Carlo method
  ' Rc = Loop Radius, dw = Conductor diameter
  ' yOffset = axial loop offset, N = Number of random point pairs
  dim i As Int64
  dim tx,ty,tye,tye1,sx,sy,sye,sye1,r1,r2,rw,sum,axial As Double
  rw = dw/2
  sum = 0
  For i = 1 to N
    'Generate two random test points S and T
    do
      tx = (rnd-0.5)*dw
      ty = (rnd-0.5)*dw
      tye = sqrt(rw^2-tx^2)
      tye1 = -tye
    loop until (ty< = tye and ty> = tye1)
    do
      sx = (rnd-0.5)*dw
      sy = (rnd-0.5)*dw
      sye = sqrt(rw^2-sx^2)
      sye1 = -sye
    Loop Until (sy< = sye and sy> = sye1)
    'Add offsets to random points to get radius and axial displacement
    axial = abs(yOffset+sx-tx)
    r1 = Rc+ty
    r2 = Rc+sy
    sum = sum+Mut1(r1,r2,axial)
  next
  return sum/N
End Function

Function Mut(ByVal r1 as double,r2 as double,x as Double) As Double
' Maxwell's elliptic integral formula to calculate mutual inductance
' between two coaxial circular loops.
' Uses AGM method to calculate elliptic integrals
' r1,r2 are radii of the respective loops
' x is the axial distance separating them
  muo = pi()*4e-7
  a = sqr((r1+r2)^2+x^2)
  b = sqr((r1-r2)^2+x^2)
  m = 4*(r1*r2)/((r1+r2)^2+x^2)
  c = a-b
  ci = 1
  cs = c*c
  do

– !  –45



    ao = (a+b)/2
    b = sqr(a*b)
    a = ao
    co = c
    c = a-b
    ci = 2*ci
    cs = cs+ci*c*c
  loop while c<co
  Mut = muo/8*pi()*cs/a
end Function

The results of the program are plotted in the following graph which shows the relative error of the 
GMD inductance value, compared to the Monte Carlo inductance value, as the ratio of conductor 
diameter to loop radius is varied. Note that the largest possible ratio d/D is 1. We will define the 
variable u as the ratio d/D in the following discussion. We will use the variable ϵ as the relative 
error, and define it as:

ϵ = LGMD/LMC − 1 (4.1.1)

where LGMD is the inductance value calculated by the GMD method, and LMC is the inductance 
calculated by the Monte Carlo method.

By this definition, a positive value for ϵ means that LGMD is higher than the the "true" inductance 
value.

!

Surprisingly, the error is only −0.1% (−0.001 per unit, or −1000 ppM) when the wire diameter is as 
much as  0.15  times the loop diameter,  which indicates  that  the  GMD approach to  inductance 
calculation is an excellent approximation for practical values of u. Even in the worst case value of 

– !  –46



u = 1.0, the error is −13% (−0.13 per unit), which is surprisingly good when one considers the puffy 
bagel-like torus in such a situation. Also note that the error is always negative, indicating that the 
GMD method will always yield a self inductance value that is slightly lower than the true value.

If we do a log-log plot  of the data we get a much straighter line, but still slightly curved. So, there 5

is no simple power relationship:

!

The inherent randomness in the Monte Carlo method makes the line noisy for values of u less than 
0.02  (i.e.,  log(u)  <   −4),  which  is  noticeable  at  the  left  side  of  the  graph,  but  this  is  of  little 
consequence because the error at this point is only a few parts/million, and is heading towards 
zero.

It turns out that these data can be fit very well with a third degree polynomial. Solving for the best 
fit coefficients for the cubic regression line, the equation for the error is:

ϵ = −2.9945⨉10−5 u − 0.027273 u2 − 0.10003 u3 (4.1.2)

 Rather than plot the data on a logarithmically scaled graph as is traditionally done, we simply plot the natural 5

logarithms of the data on a linearly scaled graph. The resulting line has the same curvature in either case.
– !  –47



Below are both linear and log graphs showing the fitted function (in red) along with the original 
data points.

!

!

Note that there is no zero order (constant) term. It must be zero to ensure that the error value 
properly goes to zero as u goes to zero.

– !  –48



This error function could be used as a correction factor applied to GMD calculated self-inductance 
values,  if  extreme  accuracy  is  needed  in  theoretical  calculations.  However,  in  real  world  coil 
production, the normal variations in coil construction would result in a much larger inductance 
variation than the magnitude of this error value.

4.2 Mutual Inductance

Having looked at the limits of accuracy for loop self inductance, we will now look at what happens 
to the mutual inductance of a co-axial pair of wire loops as u is varied, and as the axial separation 
is varied. The same program is used, but the yOffset variable is now set to values other than zero. 
In this investigation, we will normalize the the axial offset as multiples of the loop diameter, so that 
the  results  may be  more  easily  applied  to  other  configurations.  Hence,  the  variable  x  will  be 
defined as the ratio of axial spacing to loop diameter. The following graph shows the set of curves 
generated by the program, each curve representing a different value of axial offset ratio x, and with 
u varying along the horizontal axis. Each curve is labeled with the corresponding value of x.

!

Note that for each curve, the maximum possible value for u is the smaller of x and 1.

– !  –49



Re-plotting as a log-log graph shows (below), a series of straight lines.

!
The log-log plot emphasizes the random scatter in the Monte Carlo calculation at very small values 
of u. This is a result of subtracting pairs of nearly equal values, differing only in the last couple of 
significant  digits,  causing  the  Monte  Carlo  random  error  to  be  accentuated.  But  again,  these 
correspond to only a few parts/million of actual GMD error and are of minor consequence.

The curves lie very close together, indicating that the error is much more sensitive to variations of 
u than of x. It is also interesting to note that for very small values of x, the curves start to bunch 
together, and the same thing happens, for large values of x. This implies that values of x outside 
the range examined here, will produce error values that do not lie significantly outside the range of 
the curves shown.

– !  –50



Because the lines are straight (ignoring the noise) on the log-log plot, they can be fit by the log of 
the straight line formula:

log(ϵ) = a + m log(u) (4.2.1)

or taking the exponential function of both sides:

ϵ = ea vm (4.2.2)

Since ea is a constant, we will define a new constant b = ea, and hence:

ϵ = b vm (4.2.3)

By performing a regression analysis  on each line,  we 
get  a  set  of  y-intercept  (b)  and  slope  (m)  values  as 
shown in the table at the right.

The slope is very close to 2 in every case. It drops very 
slightly where the extreme cases u = 1 can be included, 
suggesting that the value is relatively constant at 2, but 
then starts to change in the region where u approaches 
the value 1. In fact, this can be seen at the far right side 
of the log-log graph. Where u  approaches 1, the lines 
begin to curve slightly.

This  evidence  seems  to  be  sufficiently  compelling  to 
conclude that the principal term in the error function is 
second order (i.e., proportional to u2). Hence, the GMD 
inductance approximation is correct to the first order, 
but does not fully account for second order effects, and 
that  higher  order  error  effects  are  almost  negligible, 
except when u approaches 1. Consequently, we will be 
presume the  slope to  be  exactly  2,  and we will  then 
recalculate  the  intercept  b  values  for  best  fit.  This 
recalculation is shown in the next table to the right.

– !  –51

x b m
0.02 -1.65984 2.01249
0.05 -1.59745 2.03071
0.1 -1.59625 2.00430
0.2 -1.36547 2.02736
0.5 -1.17197 2.00648
1.0 -1.09616 1.94528
2.0 -0.99331 1.92341
5.0 -0.94899 1.91409

10.0 -0.93911 1.91810
50.0 -0.93638 1.91813

x b m
0.02 -1.79005 2.00000
0.05 -1.73758 2.00000
0.1 -1.62895 2.00000
0.2 -1.47300 2.00000
0.5 -1.18791 2.00000

1 -1.05116 2.00000
2 -0.93378 2.00000
5 -0.88396 2.00000

10 -0.87750 2.00000
50 -0.87378 2.00000



If we plot these b values against x, we see an extremely nonlinear relationship:

!

Given the hyperbola-like shape of the curve, it seems plausible that changing the ordinate of the 
graph from x  to  1/x  might  straighten it  out.  However,  it  turns out  that  it  makes virtually no 
improvement. On the other hand, a log-log plot is more enlightening:

!

– !  –52



This is a sigmoid (S-shaped) curve with an inflection point near log(x) = 0. The inflection point 
deserves some discussion. It occurs where the distance separating the loops is approximately equal 
to the loop diameter—a square aspect ratio.  It  signifies a point where one factor becomes less 
influential to the overall behaviour, and another factor becomes more influential. In this case, when 
the loops are close together, the largest influence on the mutual inductance on a point on one loop 
is due to the parallel current flowing in the nearest point of the other loop. This is much more 
significant than any other factor. As the spacing reaches the inflection point, the influence of the 
anti-parallel currents from diametrically opposed points on the loops become just as influential as 
the parallel currents, and then remain that way as the separation increases further.

Considering that the mutual inductance error curves are a function of two variables, with one of 
them  being  very  nonlinear,  it  was  questionable  whether  it  would  be  feasible  to  try  to  fit  an  
empirical error function. Nevertheless, it seemed to be worthwhile to expend some effort to find a 
fitting function. Given that each curve is primarily a simple square law function, the main effort 
then would be to find a fitting function for a sigmoid curve that predicts the b coefficients based on 
the value of x.  There are numerous functions which have this shape,  including the arctangent 
function  and  the  hyperbolic  tangent  function,  as  well  as  some  algebraic  functions  and  some 
functions involving exponentials. Testing several of them, it was found that the hyperbolic tangent 
function fits these data very well. Since tangent functions are related to aspect ratios, perhaps this 
should not be too surprising. Overlaying the fitted hyperbolic tangent function (red), we get the 
following graph:

!

– !  –53



As can be seen,  it  fits the data quite well.  However,  some caution is  required.  This is  a fitted 
function of the log of the data. We must then take the antilog of this function to fit the original data, 
and doing so can exacerbate any errors in the fitting function.

The function and optimized coefficients are as follows:

log(-b) = k0+k1 tanh(k2+k3 log(x) ) (4.2.4)

k0 = −1.34177 
k1 =   0.47936 
k2 =   0.74321 
k3 =   0.62668

Applying the exponential function to both sides of the equation, and negating, we get:  

! (4.2.5)  

Having developed a relationship for the b values as a function of x, we now have the basis of a 
function that will predict the GMD error for co-axial loop mutual inductance. Substituting the b 
function into the ϵ function we get:  

! (4.2.6)  

b = � exp


k0 + k1 tanh

�
k2 + k3 log (x)

��
.

✏ = � exp


k0 + k1 tanh

�
k2 + k3 log (x)

��
u

2
.

– !  –54



Below is the log-log error graph with the predicted error function overlaid:

!  
With the lines grouped so closely together it is not easy to see much beyond the fact that they do 
seem to line up. It can be seen that as log(u) approaches 0 (i.e., u approaches 1), the error curves 
start to bend away from a straight line, as was mentioned earlier.

– !  –55



Re-plotting on a linear graph, we get the following:

!

The correlation for 0 < u ≤ 0.5 is reasonable. However, the region of 0.5 < u ≤ 1 leaves much to be 
desired. While this range of geometry is an extreme that is unlikely to be encountered in practice, 
it's worth considering the inclusion of a correction term that comes into effect for u  >  0.5. The 
correction may take either of two forms, an additive correction term, or a multiplying factor. After 
some experimentation,  the  additive  term appeared  to  be  the  most  promising,  and that  is  the 
approach that was taken. We therefore want a term which is asymptotic to zero when u  < 0.5, and 
then smoothly bends away from zero when u > 0.5. As was used in the development of the mutual 
GMD  formula  for  elliptical  areas,  a  rational  function  again  appears  to  be  suitable.  A simple 
function that accomplishes this is:  

!  
The exponents n and m determine the function's behaviour when u is large. if we set n = m+1, then 
for large u, the function will asymptotically approach a straight line with a slope equal to k4. The 
constant k5  determines the crossover point between the zero asymptote and the constant slope 
asymptote. Though it is proposed to set n to be one greater than m, there is nothing to suggest that 

k4
un

um + k5
.

– !  –56



the difference cannot be greater, especially since the function is limited to a finite range of values 
for u, eliminating the risk of it blowing up for large values of u. It's always best to start with the 
simplest function, and if it's found to be unsuitable, then it can be further adjusted. With some 
experimentation,  it  was found that  the optimum values for  m  and n  are 3  and 4 respectively. 
Hence, the correction term is:  

!  
The optimum values of k4 and k5 will be given later.

While this correction term was a good starting point and gave reasonable improvement in the fit, it 
was found not to be sufficient to adequately correct the empirical function. It became clear that the 
correction term needs to be a function of both u and x. While u is confined to the range of values 
from 0 to 1, x can take on any value from zero to infinity, which adds some complication to finding 
a function that will be well behaved for any x. As previously mentioned, for values of x greater 
than about 5, the error curves begin to bunch together. In fact there is no discernible difference 
between the curve for x = 10 and for x = 50. The correction term involving x must not disturb this 
behaviour.  Therefore,  this  correction  factor  must  approach  a  fixed  value  asymptotically  as  x 
becomes large. Again a rational function is chosen. In this case:

!

This function has a value equal to k6  when x  =  0,  and then asymptotically approaches 1 as x 
becomes large. The product of the first and second correction factors then becomes the complete 
correction term:  

!  
And, the complete GMD error function is then  

! (4.2.7)  

k4
u4

u3 + k5
.

x

2 + k6

x

2 + 1
.

k4

✓
u

4

u

3 + k5

◆ ✓
x

2 + k6

x

2 + 1

◆
.

✏ = � exp


k0 + k1 tanh

�
k2 + k3 log (x)

��
u

2
+ k4

✓
u

4

u

3
+ k5

◆ ✓
x

2
+ k6

x

2
+ 1

◆
.

– !  –57



With the candidate function having been set, all constants (including k0−k3) are then re-optimized, 
yielding the following values:

k0 = −1.22339 
k1 =   0.53125 
k2 =   0.66240 
k3 =   0.77879 
k4 =   0.76927 
k5 =   4.58965 
k6 =   0.25572

The optimization process required certain compromises to be made. Primarily, it was a question of 
whether  to  do  a  least  squares  fit  based  on  absolute  error  or  on  relative  error.  Relative  error 
produces a better fit for small values of u, while absolute error produces a better fit for large values 
of  u.  Normally,  relative  error  would  be  the  best  choice,  especially  since  the  parameters  are 
normalized so that  they can be scaled for  any application,  and would then yield a  consistent 
percentage error for any value. However, the large scatter of the points at small u resulted in an 
unsatisfactory fit. Ultimately, it was decided to use relative error as the fitting criterion, but with 
the data weighted by the square root of u. No statistical checks were done to verify the validity of 
this approach. However, this gave the most satisfactory fit based on a visible inspection of the 
graphs of the fitting function, when viewed at microscopic and macroscopic levels.

The following graphs show the results of the fitting process on both linear and log scales. The red 
curves are the fitting function, while the blue points are the data (Monte Carlo calculations) that 
were fitted.

!

– !  –58



!

While the final formula may seem slightly unwieldy, the fact that it is reasonably accurate over 
several decades of u and x values, the complexity is not excessive.

– !  –59



4.3 Example Calculation

At this point it is worthwhile to provide a worked example. We will show the total error in the 
GMD based inductance calculation of a solenoid coil of practical dimensions. For this example, the 
coil will have the following parameters:  
N = 30 turns 
d = 0.5 mm 
D = 25 mm 
Winding Pitch = 1 mm

Below is a clipping from a spreadsheet showing the inductance calculation using the summation 
method.

!

The self inductance of each turn is calculated on row 8 by setting the pair offset value to the self 
GMD of the wire cross section. The mutual inductance of every combination of pairs of turns is 
calculated on rows 11 through 39. All self and mutual inductance calculations are done using the 

– !  –60



Mut()  function  previously  described  and  with  the  results  shown  in  column  D  in  units  of 
microhenries. The mutual inductance of each pair of turns from column D is multiplied by the 
number of occurrences of each pair. This total value is shown in column E. The total of column E 
from rows 8 through 39 gives the inductance of the complete coil  and is shown in cell  E40 as 
13.36784 µH. Columns F and G show the x and u values which are used to calculate the predicted 
error ϵ (per unit) in column H. The absolute error in microhenries shown in column I is calculated 
by multiplying the value of self or mutual inductance from column E by ϵ/(ϵ+1).

The total of column I is the amount, in microhenries, that the inductance is predicted to be in error. 
The total error value shown in cell I40 is −0.00106 µH. That is, the calculated inductance value is 
predicted  to  be  low  by  −0.00106  µH.  This  amounts  to  only  about  0.008%  of  the  calculated 
inductance value, and is essentially insignificant.  However,  if  we wish to adjust the calculated 
value to account for the predicted error, then we can subtract this error value from the calculated 
value to get an “adjusted” value which is shown in cell I42. What this example tells us is that the 
approximation involved in calculation by the GMD method is a very good one for coils of typical 
geometry.

4.4 Summary

Having derived the error functions for  both the self  and mutual  loop inductance GMD based 
calculations, these values can be used as part of an error analysis procedure when calculating the 
inductance of an entire coil using the summation method.

If one were so inclined, and suitably ambitious, this study could be expanded to include loop 
conductors having non circular cross sections.

– !  –61



Part 5 - Combined GMD of Multiple Objects

5.1 Basic Principles

Maxwell [1a], in addition to providing formulae for the GMD of simple geometric shapes using 
integration as discussed above, also showed how to combine the GMD of these simple shapes to 
determine the GMD of more complex shapes.

If we can calculate the GMD between objects using any of the previously discussed methods, then 
we can also calculate the GMD between groups of objects simply by taking the individual GMDs 
and finding their overall geometric mean weighted by the areas of the objects. For example, if we 
have three areas A1, A2 and A3, and if the GMD between A1 and A2 is g12, the GMD between A1 and 
A3 is g13, then the GMD between A1 and the group A2 and A3 g1-23 is:

log(g1-23) = (A1A2log(g12)+A1A3log(g13))/(A1A2+A1A3) (5.1.1)

Area A1 is included in the formula in order to show how it applies to the weighted mean, but in 
this case it cancels out and disappears from the formula, leaving:

log(g1-23) = (A2log(g12)+A3log(g13))/(A2+A3) (5.1.2)

In many other cases, the areas of all objects will remain in the formula.

In cases where all  of  the figures have the same area,  then all  of  the areas disappear from the 
formula, and only the number of objects remains, thus becoming a simple unweighted mean.

The most general case is for the GMD between two different groups of areas. If we designate the 
first group a consisting of m areas Aai where i = 1..m, and the second group b of n areas Abj where 
j = 1..n, then the GMD between the two groups is:

! (5.1.3)

Now, in the special case where group a is the same group of objects as group b, then the above 
formula will produce the self GMD of that group of objects. Thus, for the self GMD of a group of 
objects, the formula becomes:

! (5.1.4)

log(g) =

mP
i=1

nP
j=1

AaiAbj log (gij)

mP
i=1

nP
j=1

AaiAbj

log(gS) =

nP
i=1

nP
j=1

AiAj log (gij)

nP
i=1

nP
j=1

AiAj

– !  –62



These formulae are sufficiently general to cover just about any case. From here, we can move on to 
some special cases which result in simpler formulae. Perhaps the most common of these is where 
all areas are identical. This eliminates the need for weighting by area, and so the two previous 
formulae 5.1.3 and 5.1.4 become:

! (5.1.5)

and

! (5.1.6)

Since the self GMD of each component is calculated differently than the GMD between different 
components, it makes practical sense to separate the self GMD terms from the other GMD terms, 
and rewrite the expression as follows:

! (5.1.7)

The leftmost summation is for the self GMD of each component, and the double summation is for 
the  GMD  between  different  components.  We  will  adopt  the  term  mutual  GMD  for  the  GMD 
between different objects and designate it as gM. 

The formula may also be written as:  

! (5.1.8)  
because the first summation includes n  terms and the second double summation includes n2−n 
terms.

5.2 Formula for the GMD of a Linear Array of Circular Conductors (LACC)

A linear array of conductors frequently occurs in electrical and electronic systems. For example, 
high  current  power  distribution  systems  often  employ  multiple  bus  bars  per  phase  because 
multiple small bars will have more surface area than single large bars, allowing for better cooling, 
and thus higher current carrying capacity than a large bar with the same total amount of copper. 
As another example, a linear array of circular conductors also appears as the cross section of a 
single layer solenoid coil. In this section, a closed form formula will be developed for the self GMD 
of a linear array of circular conductors. It will be assumed that the pitch (centre-centre spacing 
between conductors) is constant.

log(g) =

1

mn

mP
i=1

nP
j=1

log (gij)

log(gS) =

1

n2

nP
i=1

nP
j=1

log (gij)

log (gS) =

1

n2

"
nP

i=1
log(gii) +

n�1P
i=1

nP
j=i+1

log(gij)

#

log (gS) =

1

n

nP
i=1

log(gii) +

1

n2 � n

n�1P
i=1

nP
j=i+1

log(gij)

– !  –63



Formula (5.1.7) from the previous section will be the starting point. The leftmost summation in the 
formula is for the self GMD component. Formula (1.4.3) for the self GMD of a circular area has 
been given as:

gS = r e −¼

or

log(gS) = log(r) − ¼

where r is the radius of the circular area, (i.e., the conductor). By multiplying the self GMD by the 
number of occurrences n, we have the first summation of the formula:

n (log(r) − ¼)

For the mutual GMD terms, the GMD is simply the centre to centre distance between the various 
pairs  of  conductors.  The  general  formula  indicates  that  we  must  perform  n2−n  calculations. 
However, this number can be reduced significantly. Many of the calculations are identical due to 
the fact that there are only n−1 unique spacings between conductors in the array. Consequently, it 
is necessary only to do n−1 calculations, and then multiply these results by the number of times 
they occur. If we designate the pitch as p, then the distance between any two conductors will be 
i⨉p, where i is an integer between 1 and n−1. The number of occurrences of pairs of conductors 
with the various spacings is  equal  to n−i.  However,  we must  double this  number in order to 
include both gij and gji cases. Taking all of this into account, the mutual GMD part of the formula 
becomes:

!

And the complete formula for the self GMD of the linear array becomes:  

! (5.2.1)

This summation formula can be coded as a Basic program as follows:  

Function NetGMD(ByVal rw as double, n as double, p as double)
' Return aggregate GMD of linear array of circular areas
' rw is radius of circle; n is number of circles in the array
' p is centre to centre spacing (pitch) of circles
  s = (Log(rw)-0.25)*n
  for i = 1 to n-1
    s = s+2*(n-i)*Log(p*i)
  next
  NetGMD = exp(s/(n*n))
End Function

n�1P
i=1

2(n� i) log (p⇥ i)

log (gS) =

1

n2


n(log (r)� 0.25) +

n�1P
i=1

2(n� i) log (p⇥ i)

�

– !  –64



While this is useful in a hard coded computer application (and will be useful later for testing), the 
goal in this section is to develop the summation formula into a closed form expression with all of 
the summations eliminated, thus eliminating the need for For-Next Loops.

The first term:  

!

is already a closed form expression and requires no further treatment.

For the second term, it can be seen that since log(p⨉i) = log(p)+log(i), and the summation can be 
split into two parts: 

! (5.2.2)

It is straightforward to show that because p is a constant for a given configuration, the leftmost 
summation can be simplified:

! (5.2.3)

This leaves a single summation which is a function of only a single variable n: 

! (5.2.4)

To simplify the remaining derivation, the terms inside the square brackets will be multiplied by the 
1/n2 factor:  

! (5.2.5)

We will designate the remaining summation term (including the 1/n2 factor) as gM’ which refers to 
the mutual GMD component gM excluding the pitch effect.

n(log (r)� 0.25)

log (gS) =

1

n2


n(log (r)� 0.25) +

n�1P
i=1

2(n� i) log (p) +

n�1P
i=1

2(n� i) log (i)

�

n�1P
i=1

2(n� i) log (p) = (n2 � n) log(p)

log (gS) =

1

n2


n(log (r)� 0.25) + (n2 � n) log(p) +

n�1P
i=1

2(n� i) log (i)

�

log (gS) =

1

n
(log (r)� 0.25) +

✓
1� 1

n

◆
log(p) +

1

n2

n�1P
i=1

2(n� i) log (i)

– !  –65



The following graph shows values of gM’ for n up to 13000.

!

A semi-log plot of the same function shows asymptotic behaviour:

!
– !  –66



For values of n > 10 the function approximates a straight line on the semi-log graph. This indicates 
that for large n, gM’ can be approximated by:

exp(gM’) = k0 n + k1 (5.2.5)

where k0 is the slope of the line and k1 is the intercept of the asymptote on the exp(gM’) axis.

Analysis of the data shows the slope to be approximately 0.22313, which is readily explained. As n 
grows large, this term of the self GMD formula becomes dominant. At the same time, our linear 
array of circular areas begins to approximate a line of evenly spaced dots. Hence, the self GMD 
begins to approach that of a straight line which is e−3/2 times its length. Thus, the asymptote has a 
slope exactly equal to e−3/2 (0.223130160148…). Interestingly, the asymptote does not pass through 
the origin. The exp(gM’) axis intercept can be determined from the data to be 0.410086, which gives 
a function that is approximately correct for large n:

exp(gM’) =  e−3/2 n + 0.410086 (5.2.6)

The correct minimum value of the function is 0, occurring for both n = 1 and n = 2. To account for 
the nonlinear behaviour when n < 10, it appears that a correction term of the following form can be 
included:

k2/(1+k3nm) (5.2.7)

This works acceptably well, but if we consider that n is never less than one, it will turn out to be 
more convenient (and coincidentally, a better fit) to use this form instead:

k2/(1+k3(n−1)m) (5.2.8)

The complete expression for gM’ is then:

exp(gM’) =  e−3/2 n + k1 + k2/(1+k3(n−1)m) (5.2.9)

In the limiting case when n = 1, the denominator of the correction term is 1 and the value of the 
correction term is equal to k2. It then becomes a straightforward calculation to determine the value 
k2 so that the overall expression will produce the correct value of exactly 1 when n = 1. Hence:

k2 = 1 −  e−3/2 − k1

Restricting the value of k2 in this way, and then optimizing only k3, will result in no significant 
difference in overall error as compared to optimizing both k2 and k3.

– !  –67



Choosing different values of the exponent m and adjusting the k3 value for the best fit, yields a best 
exponent value of m = 1, and optimum k3 = 1.583635, resulting in this complete formula for gM’:

exp(gM’) =  e−3/2 n+ k1 + (1 −  e−3/2 − k1)/(1+ k3 (n−1) ) (5.2.10)

or

gM’ = log( e−3/2 n+ k1 + (1 −  e−3/2 − k1)/(1+ k3 (n−1) )  ) (5.2.11)

where

k1  =  0.410086 
k3  =  1.583635

This has a worst case error of 0.17% occurring at n = 2 and n = 5, as shown in the following graph:

!

The contribution of this term to the overall GMD, at these values of n, results in about the same 
overall percentage error, i.e., 0.17%, but its contribution drops off rapidly as n increases, so that the 
overall error in GMD drops off much more rapidly than what is shown in the gM’ error graph.

We have now replaced all of the summation expressions in the GMD formula with simple closed 
form expressions. Combining all of the terms, we have:  

!
(5.2.12)

Finally, taking the exponential function of both sides, we have the formula for the GMD of a linear 
array of circular conductors:  

!  
(5.2.13)

log(gS) = log

 
e�

3
2 n + k1 +

1� e�
3
2 � k1

1 + k3(n� 1)

!
+

✓
1� 1

n

◆
log(p) +

1

n

�
log(r)� 0.25

�
.

gS = exp

"
log

 
e�

3
2 n + k1 +

1� e�
3
2 � k1

1 + k3(n� 1)

!
+

✓
1� 1

n

◆
log(p) +

1

n

�
log(r)� 0.25

�
#

.

– !  –68



By  applying  various  exponential  and  logarithmic  identities,  all  of  the  log  functions  and  the 
enclosing exponential function can be eliminated from the formula:  

! (5.2.14)

When n = 1, the empirical factor is also 1. Thus, in this form, it is easy to see how the formula 
transitions from r e−1/4 (the self GMD of a circular area) when n = 1, to n p e−3/2 (the self GMD of a 
line) when n is large.

The constant term, k1 = 0.410086, inside the first factor, is significant and deserves some discussion. 
Because of its presence, the GMD of the linear array will always be slightly greater than the GMD 
of a straight line of the same overall length. The principal difference between the two geometries, 
is that a straight line comprises a continuous row of points of infinitesimal spacing. The linear 
array of circular areas has its points concentrated at intervals of p. It can be concluded that this 
difference accounts for the small difference in GMD between the two, which is equal to k1 p when n 
is  large.  If  the pitch is  made very small,  tending towards zero,  corresponding to  infinitesimal 
spacing between points, then this factor disappears, and the formula gives the same value as the 
formula for the GMD of a straight line. This coefficient is of sufficient importance that it should 
have a better name than k1. We will refer to it as the density uniformity coefficient, and give it the 
symbol kD. This will come up again very shortly. It should also be stated that even though we don't 
yet have a simple analytical expression for the value of kD, this will be addressed later.

It is important to note that in formula (5.2.14), variables r and p must have the same units of length. 
The resulting value of gS is in the same units as r and p.

Since the results are scaleable, it is possible to remove either p or r from the formula, and replace 
the remaining variable with the ratio of the two, which would then give a dimensionless result.

Let u be the ratio of conductor radius to pitch, r/p. Then:  

!  
Looking at only the rightmost factors:  

!  
and substituting u⨉p for r: 

!  
Expanding the factors:  

!  

gS =

 
e�

3
2 n + k1 +

1� e�
3
2 � k1

1 + k3(n� 1)

!
e(
�1
4n )p(1� 1

n )r(
1
n )

.

r = u⇥ p

p(1� 1
n )r(

1
n )

p(1� 1
n )(u⇥ p)(

1
n )

p(1� 1
n )p( 1

n )u( 1
n )

.

– !  –69



Combining the p factors:  

!

The exponent of p simplifies to one, and the complete GMD formula becomes:

! (5.2.15)

The last remaining empirical constant k3 has been renamed kF (for fitting constant). The values of 
these constants are as previously given:

kD  =  0.410086 
kF  =  1.583635

Pitch can now be removed from the formula, if desired, leaving a dimensionless formula, where gS 
is now expressed in terms (i.e., multiples) of pitch p.

We are not quite finished with this formula. It is accurate as shown, but as we continue through the 
next  sections,  it  will  become  apparent  that  certain  terms  can  be  combined  and  simplified. 
Additionally, the exact value of kD  will be derived. It will be shown that kD  is exactly equal to 
log(2π) e−3/2. However, it will also be shown that e−3/2 is a common factor throughout the formula. 
It will be separated out, and with the revised formula, kD will be redefined simply as log(2π). The 
formula will also be modified to allow for hollow tubular conductors as well as solid conductors. 
This is governed by the rightmost exponential function. By changing the constant in the exponent 
from ¼ to 0, it changes from a solid conductor formula to a hollow conductor formula. This fixed 
constant will be replaced by the variable 𝛾. Thus, the formula becomes:

! (5.2.16)

As the final step here, the factor e−3/2 will be factored out, and taken outside of the parentheses.

! (5.2.17)

kF  =  1.583635 
𝛾 = ¼ for solid conductors  
𝛾 = 0 for thin tubular conductors

p(1� 1
n + 1

n )u( 1
n )

gS =

 
e�

3
2 n + kD +

1� e�
3
2 � kD

1 + kF (n� 1)

!
e(
�1
4n )u( 1

n )p

gS =

 
e�

3
2 n + log (2⇡)e�

3
2

+

1� e�
3
2 � log (2⇡)e�

3
2

1 + kF (n� 1)

!
e(�

�
n )u(

1
n )p

gS =

 
n + log (2⇡) +

e
3
2 � log (2⇡)� 1

1 + kF (n� 1)

!
e�

3
2 e(�

�
n )u(

1
n )p

– !  –70



5.3 Formula for the GMD of a Linear Array of Co-linear Straight Line Segments (LALS)

Having worked through the derivation of the GMD for the Linear Array of Circular Conductors 
(LACC),  and recognizing the simple correspondence of  each term in the formula to either the 
GMD of a circular conductor, or the GMD of a straight line, it quickly becomes apparent that it is 
nearly trivial to arrive at the equivalent GMD formula for a linear array of any geometric shape. A 
linear  array  of  co-linear  straight  line  segments  (henceforth  LALS)  is  a  worthwhile  example, 
because it  can represent a current sheet which has been very well studied, and it gives us the 
opportunity to make comparisons between the two.

First of all, from formula (2.2.6), the self GMD factor 𝛾 will change from ¼ to 3⁄2.

The mutual GMD factor will change from the simple distance between circle centres to the more 
complicated formula (2.1.4) for the GMD for co-linear line segments. Fortunately, we already know 
from the previous derivation, that the mutual GMD factor must quickly tend to a straight line with 
a slope of e−3/2, and therefore the influence of (2.1.4) can be distilled down to nothing more than 
the single constant, kD, the density uniformity constant. Starting with (5.2.15) and substituting 𝛾 for 
the fixed self inductance constant, our GMD function looks like this:

! (5.3.1)

The variable u is now the ratio of line segment length to pitch.

u = s/p (5.3.2)

The  density  uniformity  constant  kD  is  not  expected  to  be  the  same  as  for  the  LACC  (round 
conductor) case, but it can be readily determined. By calculating the summations using a discrete 
summation formula where segment length is equal to the pitch (u=1), the value of kD is determined 
to be approximately 0.334707. However, if the ratio of segment length to pitch approaches zero, 
then  it  is  apparent  that  the  segments  have  an  effect  on  the  mutual  component  the  same  as 
infinitesimal points, and the value of kD must become the same as for the round conductor case, 
0.410086.  This  has been verified by further  computer  calculations.  Therefore,  kD  is  not  a  fixed 
constant, but is now a function of the ratio of segment length to pitch, u. These two values for kD 
are the limiting values, and kD varies between them in a smooth curve. The function kD(u) will be 
discussed shortly.

Remaining to be determined is the empirical coefficient kF which, as before, is used to correct for 
the transition region between the linear large n region, and the small n region where the value 
must diverge from linearity to the predefined constant values. Because kD  is no longer a fixed 
constant, the optimum value of kF may also vary.

gS =

 
e�

3
2 n + kD +

1� e�
3
2 � kD

1 + kF (n� 1)

!
e(�

�
n )u( 1

n )p

– !  –71



For the special case where segment length/pitch ratio u is one, we can remove the u factor:

! (5.3.3)

Because the segment length to pitch ratio u is equal to one, this is little more than an elaborate 
formula for the GMD of a line of  length n  p.  Therefore,  it  should give the same value as the 
standard formula (2.2.6), i.e.:  n p e−3/2. Allowing for the approximation error in (5.3.3) when n is 
small, these two formulae are indeed equivalent. The real value of (5.3.3) is that we can equate 
(5.3.3) to (2.2.6), taking the limit as n approaches infinity, to solve for kD exactly. Doing so yields the 
following result:

kD(1) = 3⁄2 e−3/2 = 0.33469524… (5.3.4)

While this may seem obvious in retrospect,  this value converged quite slowly when doing the 
numerical summations, and did not provide enough precision to use any of the available inverse 
symbolic calculation tools.

Having now derived the exact value of kD for when u = 1, it is hoped that this may give some 
insight into the exact value for kD when u = 0. This value does not converge very quickly, but by 
using a convergence acceleration software tool, the value of kD(0) is estimated to be 0.4100858059 
with an estimated error of ±1.34x10−9. A reasonable possibility is:  

! (5.3.5)  
which is in agreement to 8 significant figures, and the simplicity of the factors is quite compelling. 
The  fundamental  constant,  π,  has  made  a  sudden  surprise  appearance.  This  is  not  entirely 
unexpected, because this exercise has been leading up to a comparison between round wires and 
current sheet segments, and the value, log(2π) − 3⁄2, is the limiting value, at n = ∞, of Rosa's round 
wire mutual inductance correction. For that reason, we should expect this term to show up at some 
point. Indeed, Rosa's formula for round wire corrections will be used later to demonstrate that 
kD(0) is exactly equal to log(2π) e−3/2. 

gS =

 
e�

3
2 n + kD +

1� e�
3
2 � kD

1 + kF (n� 1)

!
e(
�3
2n )p

kD(0)

?
= log(2⇡)e�

3
2

= 0.4100858042 . . .

– !  –72



Considering that the limiting values of kD are log(2π) e−3/2, and 3⁄2 e−3/2, it appears that the common 
factor of e−3/2 can be removed, and we can focus on the unique values, log(2π) and 3⁄2, and then try 
to fathom how kD transitions in a smooth curve between the two, as a function of u. It is not a 
straight line function of u. It changes rapidly in the region of u = 1, but flattens out as it approaches 
its lower limiting value at u = 0, as shown in the graph below.

!

From the graph, it can be seen that at u = 0, the slope is apparently zero, or very nearly so. There 
are many functions that can be adopted, having a derivative of zero at u = 0. However, given the 
frequency with which it has been encountered during this investigation, the exponential function 
seems to be a likely candidate. There is further evidence to support this hypothesis: a least squares 
fit using polynomials, ranging from degree 2 all the way up to degree 7, produces coefficients of 
roughly equal  magnitude,  hinting that  there is  an underlying power series.  Unfortunately,  the 
exponential  function  never  has  a  zero  derivative,  no  matter  what  value  its  argument  takes. 
However, it can be very simply modified, thus:  

! (5.3.6)  
where m ≥ 2. When u = 0, the derivative will be zero. We will start with the lowest order option, 
m = 2, and including a single adjustable fitting constant kF2: 

! (5.3.7)

umeum

kD = log(2⇡)� kF2u2ekF2u2

– !  –73



In this form, kF2 has no effect on kD(0). Therefore, we will calculate kF2 to fit the other limiting value 
of kD(1) = log(2π) − 3⁄2

Hence:  

! (5.3.8)  
Solving for kF2 we get

kF2 = 0.26041306 (5.3.9)

And, plotting this prospective fitting function (red line) with superimposed data points (blue), we 
get:

!

The fit is remarkably good considering that it has been fit only to the end points. Considering that 
the mid region data is less accurate due to its slow convergence, it's probably best to leave things 
as they are, and consider our search for a fitting function to be complete.

Having found a function for kD,  we still  need to adjust empirical transitional coefficient kF.  As 
previously mentioned, a single value for kF will quite possibly not be optimum for all values of kD. 
In testing, it was found that the optimum value of kF varied from 1.584 for u=0 to 1.709 for u=1. 
However the peak error was typically around 0.3%, and it  was found be a fairly broad peak. 
Choosing a fixed value for kF = 1.6334 gave a peak error of no more than 0.44% for any value of u, 
and so there appears to be no reason to complicate matters by making kF a function of u. Therefore, 
kF will be kept fixed. We now have:

!

(5.3.10)

kF2ekF2
= log(2⇡)� 3

2

gS =

 
n + log(2⇡)� kF2u

2ekF2u2
+

e
3
2 � log(2⇡)� kF2u

2ekF2u2 � 1

1 + kF (n� 1)

!
e�

3
2 e(�

�
n )u(

1
n )p

– !  –74



kF = 1.6334 
kF2 = 0.26041306 
𝛾 = 3⁄2

Formula (5.3.10)  is  a  more general  form than the round conductor formula (5.2.17),  because it 
accounts for a varying density uniformity term, which is required for any geometric shape other 
than a circle. It is no doubt possible to adapt (5.3.10) to other oblong figures such as rectangles or 
ellipses,  though it  is not known at this point whether it  is simply a matter of calculating new 
values for kF and kF2. The value of 𝛾 will certainly become a function of the figure's shape factor.

5.4 Inductance Calculation Based on Aggregate GMD

Formulae  (5.2.17)  for  the  circular  array LACC GMD, and (5.3.10)  for  the  linear  array (LASL), 
developed previously, can be directly applied in the standard formula for the mutual inductance 
between two parallel  straight  filaments  (1.4.2)  to  determine the  self-inductance  of  an  array of 
parallel round or flat conductors, such as for busbars. Below, the spacing x between filaments in 
formula (1.4.2) is replaced with the value gS calculated from formula (5.2.15).

! (5.4.1)

What may be even more interesting, is to see how the LACC and LASL GMD formulae can be 
applied to calculate the self-inductance of a coil.  In Part 4,  it  was shown that when the GMD 
inductance calculation method is applied to loops rather than straight conductors, the result will 
be accurate as long as the largest dimension of the conductor cross section is significantly smaller 
than the diameter of the loop. This would suggest that for a short coil, i.e., one that is significantly 
shorter than its diameter, the LACC and LASL GMD formulae could be used to determine the 
GMD of the complete cross section of the coil, and then applied just once in a parallel loop mutual 
inductance calculation, to determine the self-inductance of the coil. Instead of performing n mutual 
inductance  calculations  for  an  n  turn  coil,  only  one  mutual  inductance  calculation  would  be 
required. The result would then be multiplied by n2 to account for effect of the multiple turns. It 
seems plausible that this procedure could produce useable inductance values for short coils.

A filamentary loop mutual inductance formula is given by Maxwell [1c]. Adjusted for SI units, and 
using this document's symbol conventions, it is:

! (5.4.2)

L =

µ0`

2⇡

2

4
log

0

@ `

gS
+

s

1 +

✓
`

gS

◆2
1

A�
r

1 +

⇣gS

`

⌘2
+

gS

`

3

5

M = µ0rc

✓
1 +

3

16

x

2

rc
2

◆
log

8rc

x

�
✓

2 +

x

2

16rc
2

◆�
.

– !  –75



Replacing the axial separation, x, with the self GMD of the coil, gS, and including the adjustment 
for the number of turns n, we get:

! (5.4.3)

Because gS appears at three different places in the formula, it's not practical to expand it out into a 
one line formulae. Instead, we will leave this as a two part formula using (5.4.3) with either (5.2.17) 
or (5.3.10). Nevertheless, it is a closed form formula, requiring only direct calculation of readily 
available math functions, with no need for iteration. Hence, they can be placed directly into a 
spreadsheet for calculation.

What may be of interest is that we have only discussed the arrangement of the cross section as a 
linear array of circles (or line segments), without specifying its orientation with respect to the coil 
axis. In other words, we have not yet considered whether the coil is a helix or a spiral, and the 
results, so far, would indicate that in the case of short or shallow windings of large diameter, there 
should be no significant difference in the inductance value between the two. This is indeed what 
has been found in practice, and will be demonstrated here.

Having  available  an  existing  set  of  spreadsheet  macros  which  use  the  mutual  inductance 
summation method to calculate self inductance of a solenoid [7], it was a simple matter to compare  
the two calculation methods.

In this discussion, the inductance value as calculated by the accurate summation macros will be 
represented by LT (subscript T for true inductance), and the value calculated by the experimental 
LACC method as LX.  The following graph shows the ratio of LX/LT,  for different ratios of coil 
length to coil diameter. We will also define the coil shape factor (i.e., coil length to diameter ratio):  
uc = ℓC/D 
where the coil length is:  
ℓC = n⨉p  

L = µ0rcn2

✓
1 +

3

16

gs
2

rc
2

◆
log

8rc

gs
�

✓
2 +

gs
2

16rc
2

◆�
.

– !  –76



Plotting LX/LT vs. the coil shape factor uc gives the following graph:

!

The results  of  the comparison show that  the experimental  formula does produce good results 
(within 1%) for coils where the ratio of winding length to coil diameter is ⅓ or less.

The graph appears to be doubly asymptotic, approaching 1 for small values of u, and approaching 
a straight line (on the log-log graph) with a constant negative slope for large values of u. Analysis 
of the data shows that the slope of this asymptote is equal to −2, indicating that the LX/LT is a 
function of 1/uc2 as uc gets larger. This would seem to indicate that the formula's accuracy could be 
extended for larger values of uc by including a simple correction term. Indeed, if the pitch and 
conductor diameter are held constant, with the only variable being the coil length to diameter ratio 
uc, then this is exactly the case. However, it must be pointed out that as uc becomes larger, the error 
in  the  inductance  value  calculated by  the  LACC formula  becomes  very  large,  and hence,  the 
required correction factor becomes extremely large: an electromagnetic instance of the tail wagging 
the dog. This, by itself, would not be so bad, except that when we now include the effect of pitch 
and wire diameter, even these small influences are amplified when uc is large. As a result, a simple 
correction factor based only uc, does not appear to be practical. The better option is to accept these 
as  short  coil  formulae,  with  the  benefit  that  they  properly  account  for  conductor  shape.  If 
calculations for longer coils are desired, then it is more practical to employ a method given in the 
following section.

5.5 Rosa's Round Wire Inductance Corrections

In the first decade of the 20th century, the science of inductance calculation was evolving rapidly. 
At that time, there were only two basic methods for calculating the inductance of a single layer 
solenoid coil: the current sheet method, and the summation method. (Now, more than a hundred 
years later, there are two basic methods for calculating the inductance of a single layer solenoid 

– !  –77



coil: the current sheet method, and the summation method.) The current sheet method was best 
suited for long coils  wound with many turns of fine wire and of small  pitch.  The summation 
method was more accurate, but involved the calculation of the self inductance of one turn of the 
coil, as well as the mutual inductance between a turn and every other turn in the coil. For a coil of 
n turns, it was necessary to do (n−1) mutual inductance calculations, a very tedious process in the 
days before computers. So, this method was impractical for coils of more than a few turns. Though, 
Strasser  [11]  derived  such  a  formula  and  provided  a  table  to  aid  in  determining  the  mutual 
inductance component for coils of up to 30 turns.

The current sheet formula approximates the coil with a very thin cylindrical sheet of the same 
length and diameter as the coil under consideration. The inductance of the current sheet can be 
solved exactly, and is approximately correct for the actual coil.

In 1906, Edward Rosa, a physicist working for the U.S. National Bureau of Standards, investigated 
these two calculation methods [12]. He found that in certain cases, there is a small but significant 
difference in the results produced by these two methods.  He reasoned that,  by comparing the 
difference between the self inductance of one turn of a round wire and the self inductance of one 
turn of current sheet, and comparing the difference between the mutual inductance between turns 
of round wire and the mutual inductance between turns of current sheet that it would be possible 
to come up with a set of round wire correction factors that could be applied to the current sheet 
formula, making it as accurate as the summation method, but far easier to calculate.

Rosa derived two correction factors. The first, kS, corrects for the difference in self inductance, and 
the  second,  kM,  corrects  for  the  difference  in  mutual  inductance.  kS  is  a  function  of  a  single 
argument: the ratio of pitch to wire radius p/r. Similarly, kM is a function of a single argument: the 
number of turns n.

Rosa's complete correction, adjusted to SI units, is:

∆L = µ R n (kS + kM) (5.5.1)

where R is the coil radius and n is the number of turns.

This is then applied to the current sheet inductance LS to get the corrected inductance value:

L = LS − ∆L (5.5.2)

Note that ∆L can be either positive or negative.

Rosa based his corrections on Maxwell's formula for the mutual inductance of two circular loops:

! (5.5.3)

R is the radius of the loops, and x is their axial separation. Rosa found that the second order terms 
amounted to only about 1 part/million, and would not contribute significantly to the ultimate 
value. He eliminated them, leaving only the log term and the numeric constant inside the brackets:

L = 4⇡R

✓
1 +

3

16

x

2

R

2

◆
log

✓
8

R

x

◆
� 2� 1

16

x

2

R

2

�
.

– !  –78



! (5.5.4)

To calculate the self inductance of one turn of current sheet, he replaced x with the self GMD of a 
straight line, which is its length multiplied by e−3/2. Rosa factored out the number of turns and coil 
length, so that the length of a current sheet segment is now simply equal to the pitch p.

To calculate the self inductance of one turn of round wire, he replaced x with the self GMD of the 
conductor cross section, r e−1/4.

Taking the difference between these two inductance values:

! (5.5.5)

Since the difference between two logarithms is the same as the logarithm of the quotient of their 
arguments, this then becomes:

! (5.5.6)

The exponentials can be combined and taken outside of the log function giving a constant term of 
5⁄4.  In  addition,  4πR  appears  as  a  common factor  in  all  of  the correction terms.  And so,  Rosa 
removed it from the individual correction factors, and applied it in the summary calculation (see 
formula (5.5.1) ). When using SI units, the 4π term will be replaced by the permeability constant µ. 
Rosa  also  used  the  convention  that  the  correction  factor  would  be  subtracted  from  the  base 
inductance value, thus making the sign the opposite of what has been used here. Thus, Rosa's self 
inductance correction factor kS is:

! (5.5.7)

Rosa's  derivation  of  the  mutual  inductance  correction  term  kM  is  more  involved,  requiring  a 
summation of n − 1 mutual inductances for an n turn coil. For many years the most accessible form 
of Rosa's kM corrections was the tabulated data, precise to about four decimal places, in Grover's 
book [2](Table 39, page 150). For this correction term, Grover used the symbol H rather than kM. In 
2006, David Knight [14] created an empirical fitting function to reproduce the values in this table. 
In  2008,  R.  Weaver  set  about  creating  some  computer  code  [15]  to  calculate  Rosa's  mutual 

L = 4⇡R


log

✓
8

R

x

◆
� 2

�
.

�LS = 4⇡R

✓
log

✓
8

R

re�
1
4

◆
� 2

�
�


log

✓
8

R

pe�
3
2

◆
� 2

�◆

= 4⇡R

✓
log

✓
8

R

re�
1
4

◆
� log

✓
8

R

pe�
3
2

◆◆
.

�LS = 4⇡R log

 
pe�

3
2

re�
1
4

!
.

kS =
5
4
� log

⇣
p

r

⌘
.

– !  –79



inductance  corrections  using  the  original  summation  formula.  This  resulted  in  an  iterative 
computer function that could calculate Rosa's kM correction to much higher precision. Because it 
was based on Rosa's summation method, it required one iteration for every turn of the coil, making 
it somewhat cumbersome, and slow for coils with many turns. However, it's value has been in its 
ability to provide a set of accurate data which could be used as a benchmark. With a bit more 
research, a series formula by Grover was located [13](formula 31, page 176):

! (5.5.8)

This formula is accurate for large n but is not suitable for n < 5, and notably, it gives the wrong 
value for n  =  1. David Knight [14] adapted this formula, adding a 7th order empirical term to 
correct the accuracy for n < 5 and a 9th order closing term to force it to the correct value of zero for 
n = 1. Knight's formula is:

!

(5.5.9)

This  formula has a  worst  case absolute  error  of  ±1.3⨉10−8,  making it  essentially  exact  for  any 
practical purpose.

The derivation of Rosa's summation formula for kM will not be given here, but the reader can refer 
to the references for details. The preceding synopsis should be sufficient background for what is to 
follow.

From the foregoing, it would seem apparent that by taking the difference of the logarithms of the 
LACC formula (5.2.15) and the co-linear line GMD formula (2.2.6) for of a line of equal length, then 
it should result in the same value as Rosa's kS and kM factors combined. Thus, we start with (5.2.15) 
and (2.2.6) combined:

!

(5.5.10)

Note that the factor n is included outside of the log function. This is due to a primary difference 
between the LACC formula and Rosa's formula. The LACC formula is a GMD calculation for a 
complete winding, and in order to turn it into an inductance value, it must be multiplied by n2. 
Rosa's formulae were developed as per-turn corrections and are only multiplied by n in his overall 
∆L  correction function.  Therefore,  an additional factor of n  needs to be included in the LACC 
formula to yield the same results.

km = log (2⇡)� 3

2

� 1

6n
log(n)� 0.330842

n
� 1

120n3
+

1

504n5
.

km = log (2⇡)� 3

2

� 1

6n
log(n)� 0.33084236

n
� 1

120n3
+

1

504n5
� 0.0011935

n7
+

0.000507

n9
.

ks + km = n log

" 
e�

3
2 n + kD +

1� e�
3
2 � kD

1 + kF (n� 1)

!
e(
�1
4n )u(

1
n )p

#
� n log

⇣
npe�

3
2

⌘
.

– !  –80



Converting the difference of logarithms to the logarithm of a quotient:

! (5.5.11)

The pitch p appears in both numerator and denominator, and cancels out, resulting in a function of 
only two arguments, u and n. The value of kD, has previously been given as log(2π) e−3/2 (though 
not yet proven), and is now substituted for kD:

!

(5.5.12)

Inside the first parentheses, the factor e−3/2 occurs in nearly every term, and will be taken outside:

! (5.5.13)

The factor e−3/2 outside the parentheses now cancels with the factor e−3/2 in the denominator of the 
rightmost  fraction.  We will  replace the fixed coefficient  for  circular  areas,  1⁄4,  in  the self  GMD 
exponent, with the variable 𝛾,  to allow the formula to be used for both solid round wires and 
round tubular conductors.

! (5.5.15)

There is no reason why the constant kF cannot be re-optimized to give the minimum error in this 
application. Doing so gives a marginally different value than before:

kF = 1.59516

In testing, the formula has a worst case error of no more than about 1% in most cases. The error 
here is higher than the peak error of 0.17% of formula (5.2.15) by itself,  because the correction 
formula involves the subtraction of terms of similar value, thus increasing the % error. In certain 
situations when Rosa's kS and kM corrections are roughly equal in magnitude and opposite in sign, 
while at the same time, n is less than 10 (the least accurate region of the empirical factor), then the 
% error can be considerably higher, though at the same time, the absolute error is extremely small. 
Therefore, it is of no great consequence, because in that case, the actual correction is negligible. 
However, this can be disconcerting when one looks only at relative error rather than absolute error.

ks + km = n log

" 
e�

3
2 n + kD +

1� e�
3
2 � kD

1 + kF (n� 1)

!
e(
�1
4n )u(

1
n )p

npe�
3
2

#
.

ks + km = n log

" 
e�

3
2 n + log(2⇡)e�

3
2

+

1� e�
3
2 � log(2⇡)e�

3
2

1 + kF (n� 1)

!
e(
�1
4n )u(

1
n )

ne�
3
2

#
.

ks + km = n log

" 
n + log(2⇡) +

e
3
2 � 1� log(2⇡)

1 + kF (n� 1)

!
e�

3
2
e(
�1
4n )u(

1
n )

ne�
3
2

#
.

ks + km = n log

" 
n + log (2⇡) +

e
3
2 � log (2⇡)� 1

kF (n� 1) + 1

!
e(
��
n )u(

1
n )

n

#
.

– !  –81



To  verify  that  this  error  is  due  only  to  the  approximation  in  the  empirical  factor,  and  not  a 
fundamental error in the derivation, the formula was also tested with the empirical factor replaced 
with the exact numerical summation. In this case the agreement with Rosa's original calculations 
was found to be exact, thus validating this formula.

—

Now that we have verified that this formula is equivalent to Rosa's formula, we are finally at a 
point where we can demonstrate that the value of the density uniformity constant, kD, is in fact 
exactly log(2π).

Grover has demonstrated that the limiting value at n = ∞ for Rosa's kM is log(2π)−3/2 [13](page 
176). Also, refer to formula (5.5.8). Therefore, we must show that the limit as n goes to ∞ of formula 
(5.5.15) also gives this same value. We will replace kM  on the left side of the formula with the 
limiting value. The empirical fractional term on the right side inside the parentheses will go to zero 
due to n being in the denominator. So, this term can immediately be eliminated. Also, as we have 
not yet proven that kD=log(2π), we will put kD back into the formula. So, we begin with:  

! (5.5.16)  
The self inductance correction kS will be dealt with presently. Next we take the factor n inside the 
log term making it an exponent: 

! (5.5.17)  
Rearranging: 

! (5.5.18)  
Making use of this exponential relationship:  

!  
the n exponent can be combined with the exponents of e and u; n and 1⁄n cancel each other out, 
leaving these terms no longer a function of n: 

! (5.5.19)  

log(2⇡)� 3
2 + ks = lim

n!1

"
n log

 
(n + kD)

e(
��
n )u(

1
n )

n

!#
.

log(2⇡)� 3
2 + ks = lim

n!1

"
log

 
(n + kD)

e(
��
n )u(

1
n )

n

!n#
.

log(2⇡)� 3
2 + ks = lim

n!1


log

✓✓
n + kD

n

◆n ⇣
e(
��
n )u(

1
n )

⌘n
◆�

.

�
ab

�c = abc
.

log(2⇡)� 3
2 + ks = lim

n!1


log

✓✓
n + kD

n

◆n

e��u1

◆�
.

– !  –82



At this point we will move the limit inside the log function. We can do this because the function is 
continuous.  

! (5.5.20)  
This  remaining limit  is  a  well  known exponential  identity.  For  example,  see  Abramowitz  and 
Stegun formula 4.2.21 [15] (page 70):  

! (5.5.21)  
Therefore the remaining limit can be replaced with a simple exponential ekD, giving:  

! (5.5.22)

We  must  now  consider  that  (5.5.15)  includes  both  self  and  mutual  inductance  corrections. 
Therefore, we will choose a value for u that gives a self inductance correction kS = 0. Then, the 
resulting value of the formula will be due to the mutual inductance correction factor alone. From 
Rosa: 

! (5.5.23)  
Setting kS to zero we get: 

! (5.5.24)  
Hence:  

! (5.5.25)  
Substituting this into the main formula:  

! (5.5.26)  
Combining the log and exponential terms on the righthand side of the formula:  

! (5.5.27)  
For solid round wires, 𝛾 = ¼. So: 

! (5.5.28)  

log(2⇡)� 3
2 + ks = log

✓
lim

n!1

✓
n + kD

n

◆n�
e��u

◆
.

lim
a!1


a + x

a

�
a

= e

x

.

log(2⇡)� 3
2 + ks = log

�
ekDe��u

�
.

ks =

5

4

� log

✓
p

r

◆
=

5

4

� log

✓
1

u

◆
.

log

✓
1

u

◆
=

5

4

.

u = e�
5
4 .

log(2⇡)� 3
2 = log

⇣
ekDe��e�

5
4

⌘
.

log(2⇡)� 3
2 = kD � � � 5

4 .

log(2⇡)� 3
2 = kD � 1

4 �
5
4 .

– !  –83



The numeric constants cancel out, leaving:  

! (5.5.29)  
Thus, we have derived the analytical value for kD.

Now, returning to the topic of the accuracy of formula (5.5.15), it can be stated, that because the self 
inductance correction component is not affected by any approximations in the derivation of the 
formula, it is exact. So, all error in the formula is due strictly to the empirical portion of the mutual 
component. Therefore, to better judge accuracy, we can again set u equal to e−5/4, resulting in a zero 
value for kS.  Then we will compare formula (5.5.15) with the formula for Rosa's kM  correction. 
Doing this gives the following:

!

The peak error is ±4% occurring in two places at n < 10. Bear in mind that a mutual inductance 
correction with an error of 4% when combined with an exact self inductance correction and then 
applied  to  an  inductance  calculation  will  result  in  a  much  smaller  overall  percentage  error. 
Nevertheless, it does seem unfortunate that after the effort of deriving this function that we can't 
have a smaller peak error. Therefore, a second order term was added to the empirical part of the 
function, and re-optimized, now giving a peak error of ±1% as shown in the following graph.

!

kD = log(2⇡) .

– !  –84



The resulting formula is:

!

(5.5.30)

And the empirical constants are:

kF0 = 1.530574 
kF1 = 0.0326627

In addition, the constants in the numerator of the empirical term, which have been kept in their 
symbolic form throughout the derivation, can be evaluated and combined, giving a value of  
e3/2 − log(2π) − 1 = 1.643812004.

A peak error of ±1% sounds more impressive, but makes little difference in the overall scheme of 
things.  Of  course,  for  utmost  accuracy,  Rosa's  kS  formula  (5.5.7)  combined  with  Knight's  kM 
formula (5.5.9) will give essentially exact results.

The most useful test is in comparing actual coil inductance values calculated by:
i) the current sheet inductance, corrected with formula (5.5.30);
ii) the current sheet inductance, corrected with formulae (5.5.7) and (5.5.9);
iii) the iterative summation method;

The peak error in formulae (5.5.15) and (5.5.30) always occurs at n = 2, and so we will limit our 
comparison to coils of two turns. We will presume method iii) to give the most accurate inductance 
value against which the others will be compared. This is a fair assumption when the pitch and 
conductor diameter are small compared to the coil diameter.

ks + km = n log

" 
n + log (2⇡) +

e
3
2 � log (2⇡)� 1

kF0(n� 1) + kF1(n� 1)

2
+ 1

!
e(
��
n )u(

1
n )

n

#
.

– !  –85



The  following  table  compares  the  inductance  calculated  by  the  summation  method  with  the 
inductance calculated by the current sheet method which is then corrected with formula (5.5.15), 
(5.5.30) and the original rosa corrections.

!

Units are millimetres and microhenries, but the results are  scaleable to any unit, and the error 
values will  remain the same. The ratio of  conductor to coil  radius r/R  =  0.01 is  very modest. 
However, a larger ratio would introduce factors that would overshadow the GMD error.

The first column shows the ratio of pitch to conductor diameter (p/d). The second column is the 
ratio  of  conductor  radius  to  pitch (u=r/p).  The next  two columns show the inductance values 
calculated by the summation method and current sheet methods. The inductance corrections (by 
three methods) are shown in the next three columns, and finally the error due to the correction 
methods are shown in the last three columns.

Formula (5.5.15)  shows an error of  about 500 ppM (parts/million) for worst  case 2 turn coils. 
Formula (5.5.30),  with the additional fitting term, shows an error of about 120 ppM, while the 
original Rosa corrections show an error of no more than −9 ppM. Again, these numbers are for the 
worst case 2 turn coil. For coils of more turns, the error in formulae (5.5.15) and (5.5.30) will drop 
significantly, closer to the values of the original Rosa values.

Now, compare these values with the error of  the current sheet,  having no correction at  all,  as 
shown in  the  far  right  column.  These  errors  are  up to  65,000 ppM, or  6.5%.  This  gives  some 
perspective of just how well these round wire corrections do work.

The above comparison is based on the assumption that the summation inductance calculation is 
completely accurate. However, the summation calculation assumes that the turns of the coil are 
perfect parallel circular rings spaced apart at distance equal to the pitch, ignoring the true helicity 

– !  –86



of the coil. This is not usually a bad assumption, but if we are comparing the amount of error 
introduced by other approximations, then this one needs to be addressed as well.

In  the  following  table,  the  summation  calculation  is  compared  to  a  true  helical  inductance 
calculation [17] for the same range of 2 turn coil parameters:

!

It can be seen that by failing to take into account the helicity of the coil, the summation method is 
in error by as much as 400 ppM. This is approximately the same amount of error as the simpler 
correction formula (5.5.15), and nearly four times the error of the more accurate correction formula 
(5.5.30).

5.6 Flat Conductor Corrections

Formulae in the general form of (5.5.15) or (5.5.30) can, of course, be simply adapted to handle 
corrections  for  other  conductor  shapes.  This  may  be  the  most  useful  aspect  of  this  form  of 
correction expression. For example, formula (5.3.10) can be developed into a correction factor for 
straight co-linear conductors which have gaps between the conductors.

The derivation is exactly the same as for formula (5.5.30), and so only the final formula is given 
here:

!

(5.6.1)

kS + kM = n log

" 
n + log(2⇡)� kF2u

2ekF2u2
+

e
3
2 � log(2⇡)� kF2u

2ekF2u2 � 1

1 + kF (n� 1)

!
e(�

�
n )u(

1
n )

n

#

– !  –87



kF = 1.6334 
kF2 = 0.26041306 
𝛾 = 3⁄2

This correction formula would be applicable to flat spiral  inductors—etched on printed circuit 
boards, or fabricated on silicon—when combined with a circular disk current sheet inductance 
formula, such as that of Rayleigh and Niven [4](formula 70, adjusted for SI units): 

! (5.6.2)

where x is the radial depth of winding, and R is the mean radius of the winding.

At the time of writing, this correction formula has been only briefly tested, but it appears to give at 
least  a  tenfold  improvement  in  accuracy  over  an  uncorrected  disk  current  sheet  inductance 
calculation, as compared to a loop summation calculation. What is more in question at this time is 
the range of accuracy of available current sheet formulae. However, this will be the subject of a 
future article.

LS = µ⇡Rn

2


log

8R

x

� 1

2

+

x

2

96R

2

✓
log

8R

x

+

43

12

◆�
.

– !  –88



Afterword
This article began as a result of my work developing a method for calculating the inductance of a 
helical coil that fully accounts for the effect of its helicity for any pitch: 0 to ∞. That formula made 
only one approximation: its use of the GMD of the cross section of the conductor,  rather than 
integrating across the conductor cross section. That raised the question of whether the resulting 
formula gained accuracy due to its accounting for helicity, only to lose it again due to the use of 
GMD. Unfortunately, there appeared to be no information, readily available, that quantified the 
error  caused  by  the  use  of  GMD.  That  lack  of  information  was  the  spark  that  launched  the 
investigation into the accuracy of the GMD method, and which eventually became Part 4 of this 
document. The result of that work has shown that the error introduced by the use of GMD is 
almost always considerably smaller than the error introduced by the failure to account for the 
helicity  of  the  coil.  Neither  the  current  sheet  method nor  the  summation method account  for 
helicity.

The GMD approximation error becomes significant only when the conductor diameter becomes a 
very significant fraction of the coil diameter. However, a consequence of this is that the coil pitch 
must then also become large, and therefore, the non-helicity error also becomes prominent. For 
coils having a pitch angle of more than about 6° (equivalent to p/D = 0.33), the non-helicity error is 
appreciable.  For ψ <  6°, neither helicity nor GMD error should be significant,  except for work 
requiring the utmost accuracy, and in that case the method of correction given in Section 4.3 may 
be used.

While the accuracy question has been resolved, that research spawned other lines of investigation 
into related GMD topics, such as numerical GMD calculation methods, which either had not been 
treated elsewhere, or else their sources were very obscure. As a result, it seemed worthwhile to 
combine these other topics to make a more general article on the subject of GMD. There continue 
to be related areas of interest which will be explored in due course, but if we waited for that list to 
be exhausted, this document would never be finished.

Finally, I would like to express my appreciation to Dr. David Knight, whose work is cited here, and 
who reviewed several drafts of this document, and provided valuable feedback.

– !  –89



References
1. Maxwell, James Clerk; A Treatise on Electricity and Magnetism, Vol. 2, Third Edition, Dover 1954;  

(a) Art. 691, On the Geometrical Mean Distance of Two Figures on a Plane, pp. 324-326. 
(b) Art. 701, To find M by Elliptic Integrals, pp. 338-340. 
(c) Art. 705, Further approximation of M, pp. 343-345

2. Grover, Frederick W.; Inductance Calculations–Working Formulas and Tables, D. Van Nostrand, 
1946; Reprint: Dover, 2004.

3. Dwight, Herbert B.; Tables of Integrals and other Mathematical Data; Fourth Edition, MacMillan, 
1961.

4. Rosa, E. B. & Grover, F. W.; Formulas and Tables for the Calculation of Mutual and Self-Inductance. 
Scientific Paper 169, National Bureau of Standards, Washington DC, 1916.

5. Gray, Andrew; Absolute Measurements in Electricity and Magnetism; 2nd Edition; MacMillan and 
Co.; 1921;  
https://archive.org/details/absolutemeasurem00grayuoft  
(Downloaded on 2014-07-25)

6. Seneff, E. Lockwood Jr.; Study of the Method of Geometric Mean Distances Used in Inductance 
Calculations; MScEE Thesis, University of Missouri School of Mines and Metallurgy; 1947;  
https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/26187/Seneff_1947.pdf  
(Downloaded on 2014-01-29)

7. Weaver, Robert S.; Webpage: Maxwell and Coaxial Circular Conductors  
http://electronbunker.ca/eb/CalcMethods1b.html  
(Downloaded on 2014-09-02)

8. Higgins, Thomas James; Formulas for the Geometric Mean Distances of Rectangular Areas and 
of Line Segments; Journal of Applied Physics, Vol. 14, April 1943, pp. 188-195.

9. Wichman, B. A. and Hill, I. D.; Algorithm AS 183: An Efficient and Portable Pseudo-Random 
Number Generator; Applied Statistics, 31, pp. 188-190, 1982.

10. Wien, Max; Ueber die Berechnung und Messung kleiner Selbstpotentiale [On the Calculation and 
Measurement of Small Self-potentials]; Annalen der Physik, Vol. 289, No. 13, 1894, pp. 928-947.  
http://zs.thulb.uni-jena.de/servlets/MCRFileNodeServlet/
jportal_derivate_00147928/18942891312_ftp.pdf 
(Downloaded on 2015-08-13)

11. Strasser, B.; Über die Bestimmung des Selbstinduktionskoeffizieten von Solenoiden [On the 
Determination of Self Induction coefficients of Solenoids]; Annalen der Physik, 1905 pp. 763–771.  
http://zs.thulb.uni-jena.de/servlets/MCRFileNodeServlet/
jportal_derivate_00150036/19053220912_ftp.pdf 
(Downloaded on 2016-03-06)

– !  –90

https://archive.org/details/absolutemeasurem00grayuoft
https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/26187/Seneff_1947.pdf
http://electronbunker.ca/eb/CalcMethods1b.html
http://zs.thulb.uni-jena.de/servlets/MCRFileNodeServlet/jportal_derivate_00147928/18942891312_ftp.pdf
http://zs.thulb.uni-jena.de/servlets/MCRFileNodeServlet/jportal_derivate_00150036/19053220912_ftp.pdf


12. Grover, Frederick W.; A Comparison of the Formulas for the Calculation of the inductance of coils and 
spirals wound with wire of large cross section; National Bureau of Standards Journal of Research 
vol. 3, RP90.

13. Rosa, Edward, B.; Calculation of the Self-Inductance of Single-Layer Coils; National Bureau of 
Standards, Bulletin 2; 1906.

14. Knight, David; An Introduction to the Art of Solenoid Inductance Calculation With Emphasis on 
Radio-Frequency Applications; Version 0.20; 2016.  
http://www.g3ynh.info/zdocs/magnetics/Solenoids.pdf  
(Downloaded on 2016-02-25)

15. Weaver, Robert S.; Investigation of E.B. Rosa’s Round Wire Mutual Inductance Correction Formula; 
2008. 
http://electronbunker.ca/DLpublic/Rosa_Derivation.pdf  
(Downloaded on 2016-02-25)

16. Abramowitz, Milton and Stegun, Irene A.; Handbook of Mathematical Functions, With Formulas, 
Graphs, and Mathematical Tables; National Bureau of Standards, 1964.  
http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf  
(Downloaded on 2016-02-25)

17. Weaver, Robert S.; The Inductance of a Helix of Any Pitch; 2011.  
http://electronbunker.ca/DLpublic/HelicalInductance.pdf  
(Downloaded on 2016-02-28)

18. Grover, Frederick W.; Additions to the Formulas for the Calculation of Mutual and Self Inductance; 
National Bureau of Standards, Bulletin Volume 14, No. 4, July 12, 1919.  

– !  –91

http://www.g3ynh.info/zdocs/magnetics/Solenoids.pdf
http://electronbunker.ca/DLpublic/Rosa_Derivation.pdf
http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
http://electronbunker.ca/DLpublic/HelicalInductance.pdf


Appendices

A – Program Listing for calculation of the GMD of an Elliptical Locus
  
  Program GMDelliptLine (n As int64)
  'Calculate self gmd of elliptical lines of multiple aspect ratios.
  'N is number of random pairs of points to be generated.
  dim a,x1,y1,x2,y2,theta1,theta2,gmd As Double
  dim i,j As Int64
  dim aspect,aspectAry() As Integer
  aspect = ef_pitch.Text.Val
  'Load the 'aspectAry()' array with the aspect ratios to be used.
  aspectAry = array(20,30,63,125,250,315,325,350,400,500,750)
  Print "Aspect, gmd"
  for j = 0 to Ubound(aspectAry)
    aspect = aspectAry(j)
    a = aspect/1000
    gmd = 0
    for i = 1 to n
      theta1 = ArcToAngle(rnd,aspect)
      theta2 = ArcToAngle(rnd,aspect)
      x1 = a*cos(theta1)
      y1 = sin(theta1)
      x2 = a*cos(theta2)
      y2 = sin(theta2)
      gmd = gmd+log(sqrt((x1-x2)^2+(y1-y2)^2))      
    next
    gmd = exp(gmd/n)
    Print aspect, gmd
  next
  end
  
  function ArcToAngle (arcLength As Double, aspect as Integer)As Double
  'Given the partial arc length of an ellipse
  ' and aspect ratio, return the parametric angle.
  'Note that the argument 'aspect' is an integer and is equal to the aspect ratio
  ' multiplied by 1000 to simplify its use as the parameter of the case statements.
  dim k1,k2,k3,k4,k5,k6,k7,a,b,c,d,f As Double
  'Determine quadrant transformation parameters according to arc length.
  if arcLength<0.25 then
    'Quadrant 1
    a = arcLength
    b = 0 'Angle offset
    c = 1 'sign of function
    d = 0 'function adjustment
  ElseIf arcLength<0.5 then
    'Quadrant 2
    a = 0.5-arcLength
    b = pi/2 'Angle offset
    c = -1 'sign of function
    d = pi/2 'function adjustment
  ElseIf arcLength<0.75 then
    'Quadrant 3
    a = arcLength-.5
    b = pi 'Angle offset

– !  –92



    c = 1 'sign of function
    d = 0 'function adjustment
  Else
    'Quadrant 4
    a = 1-arcLength
    b = 1.5*pi 'Angle offset
    c = -1 'sign of function
    d = pi/2 'function adjustment
  end if
  a = a*4 'scale up the argument from the range 0< = a<0.25 to 0< = a<1
  'Choose the mapping function parameters according to the aspect ratio.
  select case aspect
  Case 20
    'Aspect = 0.0200
    k1 = 0.9954197523
    k2 = -1.5960238734
    k3 = 0.5221336302
    k4 = 0.0804990919
    k5 = -1.6485276059
    k6 = 0.5239512123
    k7 = 0.1258679037
  Case 30
    'Aspect = 0.0300
    k1 = 0.9984223767
    k2 = -1.5947471825
    k3 = 0.5303252429
    k4 = 0.0687710369
    k5 = -1.6373539169
    k6 = 0.5175107258
    k7 = 0.1216076254
  Case 63
    ' Aspect = 0.063
    k1 = 1.0053774155
    k2 = -1.0812115077
    k3 = -0.3381538919
    k4 = 0.4219678890
    k5 = -1.1015803243
    k6 = -0.4182729136
    k7 = 0.5249334748
  Case 125
    ' Aspect = 0.125
    k1 = 1.0226488149
    k2 = -0.9357991585
    k3 = -0.3526079227
    k4 = 0.3054989960
    k5 = -0.9158611270
    k6 = -0.5115714778
    k7 = 0.4527321137
  Case 185
    ' Aspect = 0.185
    k1 = 1.0440215988
    k2 = -1.7853069002
    k3 = 1.4637691010
    k4 = -0.6049651753
    k5 = -1.7200884720
    k6 = 1.3112327787

– !  –93



    k7 = -0.5163293003
  Case 250
    ' Aspect = 0.250
    k1 = 1.0702064611
    k2 = -1.5638577536
    k3 = 6.7291168067
    k4 = -4.6588962658
    k5 = -1.4784593304
    k6 = 6.2841564621
    k7 = -4.8020393235
  Case 275
    ' Aspect = 0.275
    k1 = 1.08297603
    k2 = 0.32065304
    k3 = -2.92460709
    k4 = 1.54112028
    k5 = 0.29906132
    k6 = -2.96287518
    k7 = 1.67663668
  Case 300
    ' Aspect = 0.300
    k1 = 1.09677644
    k2 = 0.31383321
    k3 = -2.92801438
    k4 = 1.52766397
    k5 = 0.29919089
    k6 = -2.96132963
    k7 = 1.66867001
  Case 315
    ' Aspect = 0.315
    k1 = 1.10471140
    k2 = 0.34291534
    k3 = -2.94324420
    k4 = 1.51517585
    k5 = 0.32691385
    k6 = -2.96787128
    k7 = 1.65340874
  Case 325
    ' Aspect = 0.325
    k1 = 1.11002732
    k2 = 0.34464876
    k3 = -2.92094714
    k4 = 1.49373693
    k5 = 0.32828082
    k6 = -2.93894663
    k7 = 1.62815121
  Case 350
    ' Aspect = 0.350
    k1 = 1.12318127
    k2 = 0.00286285
    k3 = -2.28947823
    k4 = 1.20606362
    k5 = 0.01527216
    k6 = -2.31312279
    k7 = 1.32498955
  Case 400

– !  –94



    ' Aspect = 0.400
    k1 = 1.15094948
    k2 = -0.33417431
    k3 = -1.63203136
    k4 = 0.89775819
    k5 = -0.28281778
    k6 = -1.65893124
    k7 = 0.99427163
  Case 500
    ' Aspect = 0.500
    k1 = 1.21132835
    k2 = -0.25885181
    k3 = -1.52341812
    k4 = 0.81547090
    k5 = -0.20722133
    k6 = -1.48854536
    k7 = 0.85143913
  Case 750
    ' Aspect = 0.750
    k1 = 1.3815773746
    k2 = 0.26848230
    k3 = -1.39594071
    k4 = 0.91476754
    k5 = 0.19716802
    k6 = -1.17412808
    k7 = 0.72109609
  else
  'For other cases return linear value.
  'This is also the correct case for an aspect ratio of 1.
    return arcLength*2*pi
  end Select
  'Calculate the mapping function value.
  f = (k1*a+k2*a^2+k3*a^3+k4*a^4)/(1+k5*a+k6*a^2+k7*a^3)
  'Apply the quadrant adjustments to the mapping function value and then return.
  return d+c*f+b
  end  

– !  –95



B – A Method for Finding and Eliminating Errors in Mathematical Derivations

Following is  a  somewhat  crude but  effective  technique to  help  eliminate  blunders  during the 
derivation  of  formulae  having  many  terms,  using  nothing  more  than  BASIC  or  a  similar 
programming language.

The idea is to take the immediate result of each step of the derivation before any simplification, 
and code it as a BASIC function. For example, from the section, GMD of two co-linear lines of equal 
length, the result of evaluating the A1 integral is:

!

This is coded into a program function as follows:

function _A1(ByVal s as double, r as double)as double
  x = r+s
  b = s*(x-s)*log(x-s)-s*x
  x = r
  a = s*(x-s)*log(x-s)-s*x
  _A1 = b-a
end function

This is quick to do, and once this simple function template is set up, it can then be repeated for 
every term in the solution with just a bit of copying and pasting. Hence the complete, but messy 
formula for the GMD of two co-linear lines, coded into BASIC, is:

function _A1(ByVal s as double, r as double)as double
  x = r+s
  b = s*(x-s)*log(x-s)-s*x
  x = r
  a = s*(x-s)*log(x-s)-s*x
  _A1 = b-a
end function
function _A2(ByVal s as double, r as double)as double
  x = r+s
  b = 0.5*(x^2-s^2)*log(x-s)-0.5*s*x-0.25*x^2
  x = r
  a = 0.5*(x^2-s^2)*log(x-s)-0.5*s*x-0.25*x^2
  _A2 = b-a
end function
function _B(ByVal s as double, r as double)as double
  x = r+s
  b = s*x
  x = r
  a = s*x
  _B = b-a
end function

r+sR
r

A1 dx =


s(x� s) log (x� s)� sx

�r+s

r

.

– !  –96



function _C(ByVal s as double, r as double)as double
  x = r+s
  b = 0.5*x^2*log(x)-0.25*x^2
  x = r
  a = 0.5*x^2*log(x)-0.25*x^2
  _C = b-a
end function
function _GMD(ByVal s as double, r as double)as double
   A1 = _A1(s,r)
   A2 = _A2(s,r)
   A = A1-A2
   B = _B(s,r)
   C = _C(s,r)
   D = A-B+C
   _GMD = exp(D/s^2)
end function

The very last function, _GMD, calls each individual function and sums theirs results to calculate 
the complete GMD value. Since no simplification of terms has been done at this stage, the chance 
of errors is  greatly diminished. The functions can be verified by solving the GMD for specific 
values of s and r. For this example, the final formula was already known, because it has previously 
been published [4]. So, it is easy to verify. In the case of a new derivation, it’s not difficult to come 
up with a ballpark estimate of the correct GMD value, because it will fall somewhere between the 
distance  between  the  closest  points  and  the  distance  between  the  furthest  points  on  the  two 
objects. If a better estimate of the true GMD value is needed, then the Monte Carlo method can be 
used to calculate a couple of examples. However, errors in the formulae tend to affect the results 
dramatically. So, it’s not difficult to tell when an error occurs.

Once  it  is  verified that  the  functions  are  producing correct  results,  each function can then be 
simplified, with verification that the program still produces the same correct results at each stage. 
If an error occurs, then it is easy to pinpoint its location before continuing.

The _A1 function is first simplified by replacing the variable x with the limits of integration (r+s) 
and (r):

function _A1(ByVal s as double, r as double)as double
  b = s*((r+s)-s)*log((r+s)-s)-s*(r+s)
  a = s*((r)-s)*log((r)-s)-s*(r)
  _A1 = b-a
end function

Next, the a and b assignment statements are combined, paying close attention to the sign of the 
terms:

function _A1(ByVal s as double, r as double)as double
  b = s*((r+s)-s)*log((r+s)-s)-s*(r+s) - s*((r)-s)*log((r)-s)+s*(r)
  _A1 = b
end function

– !  –97



With further simplification, eventually we end up with this:

function _A1(ByVal s as double, r as double)as double
  b = s*r*log(r)-s^2 - s*(r-s)*log(r-s)
  _A1 = b
end function

This simplification is repeated with each function until the complete result is in its simplest form.

– !  –98



Revision History

2016-03-05: Original Issue

2016-03-06:
- Corrected several typographical errors
- Minor revisions to the text for clarity

– !  –99


