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SYMBOLS USED IN THIS CIRCULAR

B=magnetic induction.

c=velocity of light=2.9982X 10"
c¢m per second.

C=electrostatic capacity.

d=diameter.
e=instantaneous electromotive
force.

E=effective electromotive force.
E,=maximum electromotive force.

&=electric field intensity.
f={requency.
F=force.
F= magnetomotive force.
H=magnetic field intensity.
i=instantaneous current.
I =effective current.
I,=maximum current.
j=v—1.
k=coupling coefficient.
K=dielectric constant.

l=length.
L=gelf-inductgnce.
m=mass.

M=mutual inductance.
p=1nstantaneous power.
P=average power.

Q=quantity of electricity.
r=distance from & point.
R=resistance.
s=length along a path.
S=area.
{=time.
T=period of a complete oscillation.
v=velocity.
V=potential difference of a con-
denser.
w=instantaneous energy.
W=average energy.
X =reactance.
Z=impedance.
$=logarithmic decrement.
e=base of napierian logarithms=
2.71828.

#=phase angle.
‘A=wave length.
u=permeability.
p=volume . resistivity.
¢ =magnetic flux.
v =phase difference.
w=2x X frequency.
uf =microfarad.
uuf=micromicrofarad.
ph=microhenry.

Special symbols are defined where used in part III and elsewhere.

ERRATA

4 References to appendixes should be omitted; see symbols above and note below.
120 Par. 2, line next to last should end “micromierofarads.” k
156 Fig. 111 (facing p. 156) legend should read “mounted thermoelement, ete.”
160 Fig. 112, legend, last word should read “‘thermoelement.”
174 Fig. 125, legend, last word should read “thermoelement.”
193 Par. 1, after comma, read: ‘‘the resistance at constant frequency is approxi-
mately inversely proportional to the square of the setting, except near

Page

zero setting.”

212 Par. 1 and legend to figure 148 are in error in stating that the coupling

shown is electrostatic.

The coupling is direct induetive.

226 Fig. 165, the direction of winding of S, should be reversed.

248 Eq 143, omit I after 0.002.

265 Eq 167, sign before 0.447 should be plus.
273 Eq 182, second plus sign in second line shorld be minus. .
208 In first example omit 3d and 4th paragraphs. Number of turns is 25%.

800 Par. 2, line 2. Parameter should be multiplied by

5 3
1000

300 Par. 6, eq 208. Constant should be 0.0107003.

301 Eq 210.

Divide right-hand member by d.

311 Table 19, heading. Constant in equation should be 0.0107003.

Note.—This Clrcular Is reprinted to meet a continuing demand. The errata above are referred to also
dixes 1

in the gins at the proper points. App
2

and 2 are omitted.
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RADIO INSTRUMENTS AND
MEASUREMENTS®

PART I—THEORETICAL BASIS OF RADIO
MEASUREMENTS

i
INTRODUCTION

In the rapid growth of radio communication the appliances
and methods used have undergone frequent and radical changes.
In this growth progress has been made largely by new inventions
and applications, and comparatively little attention paid to
refinements of measurement. In consequence the methods and
instruments of measurement peculiar to radio science have devel-
oped slowly and have not yet been carried to a point where they
are as accurate or as well standardized as some other electrical
measurements.

This circular presents information regarding the more important
instruments and measurements actually used in radio work. The
treatment is of interest to Government officers, radio engineers,
and others. Many of the matters dealt with are or have been
under investigation in the laboratories of the Bureau of Standards
and are not treated in previously existing publications. No
attempt is made in this circular to deal with the operation of
apparatus in sending and receiving. The Bureau’s publications
on that and other radio subjects are listed in Appendix 2. The
Bureau will appreciate suggestions from those who use this publi-
cation for improvements or changes which would make it more
useful in future editions.

The methods, formulas, and data used in radio work can not
be properly understood or effectively used without a knowledge
of the principles on which they are based. The first part of this
circular, therefore, attempts to give a summary of these principles

@ The first edition of this circular, issued Mar. 23, 1918, was prepared by Messrs, J. H, Dellinger, J. M.
Miller, and F. W. Grover, assisted by G. C. Southworth and other members of the radio laboratory. The
revision for the second edition was done by Messrs, J. H. Dellinger, L. E, Whittemore, and R. §. Quld.
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PART III.—FORMULAS AND DATA

KV
CALCULATION OF CAPACITY
63. CAPACITY OF CONDENSERS

Umnits.—The capacities given by the following formulas are in
micromicrofarads. This unit is 1072 of the farad, the farad being
defined as the capacity of a condenser charged to a potential of x
volt by 1 coulomb of electricity. The micromicrofarad and the
microfarad (one-millionth of a farad) are the units commonly
used in radio work. Radio writers have occasionally used the
cgs electrostatic unit, sometimes called the ‘‘centimeter.” This
unit is 1.1124 micromicrofarads.

In the formulas here given all lengths are expressed in centi-
meters and all areas in square centimeters. The constants given
are correct® to o.1 per cent.

PARALLEL PLATE CONDENSER

Let S =surface area of one side of one plate
7 =thickness of the dielectric
K =dielectric constant (K =1 for air, and for most ordinary
substances lies between 1 and 10).

C =0.0885K ~ST— micromicrofarads. (110)

If, instead of a single pair of metal plates, there are N similar
plates with dielectric between, alternate plates being connected

in parallel,

C=o0 0885K(N s

(111)

In these formulas no allowance is made for the curving of the
lines of force at the edges of the plates; the effect is negligible
when 7 is very small compared with S.

3 The constants given in the formulas are correct for absolute units. To reduce to international units
the values in absolute units should be multiplied by 1.00052. ‘This difference need not be considered when
calenlations correct to 1 part in 1000 only are required.

235



236 Circular of the Bureau of Standards

VARIABLE CONDENSER WITH SEMICIRCULAR PLATES

Let N =total number of parallel plates
r;=outside radius of the plates
7, =inner, radius of plates
7= thickness of dielectric
K =dielectric constant
Then, for the position of maximum capacity (movable plates
between the fixed plates),

C=o.1390K(N_ 1)£r,=—r,’) (112)

This formula does not take into account the effect of the edges
of the plates, but as the capacity is also affected by the contain-
ing case it will not generally be worth while to take the edge
effect into account.

Formula (112) gives the maximum capacity between the plates
with this form of condenser. As the movable plates are rotated
the capacity decreases, and ordinarily the decrease in capacity is
proportional to the angle through which the plates are rotated.

ISOLATED DISE OF NEGLIGIBLE THICKNESS

Let d =diameter of the disk
then C=0.354d (113)

ISOLATED SPHERE

Let d=diameter of the sphere
then C=o0.556d (114)
TWO CONCENTRIC SPHERES

Let 7, =inner radius of outside sphere
r, =radius of inside sphere
K =dielectric constant of material between the spheres
717,
(& I.IIQK?_I_TS (115)
TWO COAXIAL CYLINDERS

Let r, =radius of outer cylinder
7, =radius of inner cylinder
K =dielectric constant of material between the cylinders
I =length of each cylinder

C=o.24;6£ (116)
L
logu ;.

This formula makes no allowance for the difference in density of
the charge as the ends of the cylinders are approached.
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64. CAPACITY OF WIRES AND ANTENNAS.
SINGLE LONG WIRE PARALLEL TO THE GROUND

For a single wire of length / and diameter d, suspended at a
height h above the ground, the capacity is )

c 0.2416l
S U2 ++/P/4 +d*/4
tog 4 +log 2 EV L (117)

Usually the diameter d may be neglected in comparison with
the length /, and the following equations are convenient for
numerical computations.

For "I—hz I,
e 0.24161 (118)

logm‘;_h G kl

For 4-1—}'21,
024!61

1031 B A k:

+‘/‘+@E)“]

C= (119)

in which the quantities

k’x - logm

2

e ()

may be interpolated from Table 6, page 242.
These formulas assume a uniform distribution of charge from
point to point of the wire.

and

VERTICAL WIRE

Formula (119), omitting the k, in the denominator, is sometimes
used to calculate the capacity of a vertical wire. It applies
accurately only when % is large compared with /, and gives very
rough values for a vertical single-wire antenna, the lower end of
which is connected to apparatus at least several meters above the

ground.
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CAPACITY BETWEEN TWO HORIZONTAL PARALLEL WIRKS AT THE SAME HEIGHT

Let d=the diameter of cross section of the wires
[=length of each wire :
h=the height of the wires above the earth
D =distance between centers of the wires.

The capacity is defined as the quotient of the charge on one wire,
divided by the difference in potential of the two wires, when the
potential of one wire is as much positive as the other is negative.

0.1208 ]
. Y24~/ Pla+d7] 4h Ha++ P[4+ D VD Fai? e
2 4+da | 4h| 2 4 2 E
‘°g‘°{1fa+7“—w4+w d} ’*‘“{zfs+-.f?’/4+m+w D }

In most cases d/I and D/l may be neglected in comparison with

unity, and we may write

0.1208 [
e D i
T S T

TWO PARALLEL WIRES, ONE ABOVE THE OTHER

For the case of one wire placed vertically above the other, the
formula (121) may usually be used, taking for the value of 4 the

mean height of the wires, i_z_’,_%ﬁ The potential of one wire is
assumed to be as much positive as the other is negative.
CAPACITY OF TWO PARALLEL WIRES JOINED TOGETHER

Let I=the length of each wire
D =distance between centers
h =their height above the earth
d =diameter of cross section.

The wires are supposed to be parallel to each other and to lie
in a horizontal plane. They are joined together so that they are
at the same potential. The capacity is defined as the quotient
of the sum of their charges by the potential above the earth.

Cc= 0.4831 1

i {Ifz+w/f*‘—!4+ﬁﬁ ) gz} 41 { Ya4Pa¥DT J4h'+m}
R V7SV e R V7R [ sy, D

(122)

2
which, in those cases where d?/I* and (%) may be neglected in

comparison with unity, may be written in the following forms:
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For TEI,
o 0.4831 1 :
it 2k 12
log,e % +log,, v 2k, (23)
For fh;I.
C= 0.4831 1

I I ? 12
loge %’”'l" log,, 5 2k, s

The quantities &, and %, are the same as in (118) and (119) and
may be obtained from Table 6, page 242.

These formulas assume a uniform distribution of charge along
the wire.

CAPACITY OF A NUMBER OF HORIZONTAL WIRES IN PARALLEL

This case is of importance in the calculation of the capacity of
certain forms of antenna. The wires are supposed to be joined
together, and thus all are at the same potential. Their capacity
in parallel is then defined as the quotient of the sum of all their
charges by their common potential.

An expression for this case as accurate as the preceding formula
(120) for two wires would be very complicated. The following
simpler solution is nearly as accurate, and in view of the disturbing
effect of trees, houses, and other like objects on the capacity of an
antenna, will suffice for ordinary purposes of design.

Let n=number of wires in parallel

D = spacing of wires in parallel, measured between centers
d =diameter of wire
h =height of the wires above the ground
! =length of each wire.
Then if the potential coefficients be calculated as follows:

4h
P11 =4.605 log“ d kl]
s forilh =1, (125)
P =4.605 log, 75 D kl:l

or,

p11=4.605 logm —k :| _
: for -4—h_:1, ' (126)
P12 =4.605 Iogwﬁ = k:]
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the approximate capacity of the n wires in ‘parallel will be

C-I.112£+[P“—+Q:—I)£'—3—k:| (127)
the quantities k, k, and k, being obtained from Tables 6 and 7,

page 242.

Example.—To find the capacity of an antenna of 10 wires 0.16
inch in diameter, in parallel, each wire 110 feet long, the spacing
between the wires being 2 feet and their height above the ground

80 feet.
For this case 4}gﬂ=‘?ﬁg or Ilfgh =0.344 and Table 6 gives k,

110
=0.146.
2X12X110 2]
2lld = et e 16500, logm? =4.2175
110
E!D=T=55 log, /D = 1.7404

"+ p11=4.605 [4.218 —0.146] =18.75
P12 =4.605 [1.740 —0.146]= 7.340

and from formula (127) and Table 7 the capacity is, reducing the
length of the wires to cm

C=(1.112X 110X 30.5) +[
= 584 ppf=0.000584 pf.

18.75+9(7.340) _
10 e

Example.—A second antenna of 1o wires, 3/32 inch diameter,
155 feet long, spaced 2.5 feet apart, and stretched at a distance of
64 feet from the earth.

For this case //4h =% =0.606, k,=0.249
l
2l/d = 39680, logm% =4.5986
/D =62, log,J/D=1.7924

=+
$11=20.04, P =7.1I, ﬁ:}__%&g —2.05=6.35

I.112 X155X30.5

=0.00082 s
e 9 uf

C=
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If the length of the antenna had been 500 feet, with the height
4h 256

unchanged, then 'T‘"’5E=°‘512’ k,=o0.026, log, 4—;=4.5154,

2h
logse 75 =1.7093; by (125) $u=20.67, py=7.75, k=2.05,

1.112 X 500X 30.5
6.99
65. TABLES FOR CAPACITY CALCULATIONS
TABLE 5.—For Converting Common Logarithms Into Natural Logarithms

i

=0.002426 uf.

Common Natural Commeon Natural Common Natural Common Natural
[ 0. 0000 25.0 57. 565 50.0 115.129 75.0 172. 694
1.0 2. 3026 26.0 59. 867 51.0 117. 432 76.0 174. 996
2.0 4. 6052 21.0 62.170 52.0 119. 734 77.0 177. 299
3.0 6.9078 28.0 64. 472 53.0 2. 037 78.0 179. 608
4.0 9.2103 29.0 66. 775 54.0 124. 340 79.0 181. 904
5.0 11.513 30.0 69.078 55.0 126. 642 80.0 184. 207
6.0 13.816 31.0 71,380 56.0 128. M5 81.0 186. 509
7.0 16.118 32.0 73. 683 57.0 131 247 820 188.812
8.0 18.421 33.0 75.985 58.0 133. 550 83.0 191. 115
9.0 20.723 4.0 78.288 59.0 135.853 8.0 193. 417

10.0 23.026 35.0 80. 590 60.0 138. 155 85.0 195. 720
1.0 25.328 36.0 82 893 61.0 140. 458 86.0 198. 022
12.0 27.631 37.0 85. 196 62.0 142. 760 87.0 200. 325
13.0 29.934 38.0 87.498 63.0 145. 063 88.0 202. 627
14.0 82,236 3.0 B89. 801 .0 147. 365 89.0 204.930
15.0 .59 40.0 92,103 65.0 149. 668 90.0 207.233
16.0 36. 841 41.0 4. 406 66.0 151971 91.0 209. 535
17.0 99. 144 42.0 96, 709 67.0 154,273 92.0 211.838
18.0 41. 447 43.0 99. 011 68.0 156. 576 93.0 214. 140
19.0 43. 749 44.0 101. 314 6.0 158.878 9.0 216.443
20.0 46. 052 45.0 103. 616 70.0 161. 181 95.0 218. 746
21.0 48, ﬁd 46.0 105, 91 71.0 163. 484 96.0 221. 48
22.0 50, 657 47.0 108. 221 72.0 165, 786 97.0 223.351
23.0 52.959 48,0 110. 524 73.0 168, 089 98.0 225.653
24.0 55. 262 49.0 112. 827 74.0 170. 391 99.0 227.956

100.0 230. 259

The table is carried out to a higher precision than the formulas, e. g., 2.3026 is abbre-
viated to 2.303 in the formulas.
Examples.—To illustrate the use of such a table, suppose we wish to find the nat-
ural logarithm of 37.48. The common logarithm of 37.48 is 1.57380.
If we denote the number 2.3026 by M, then from the table
L5 M=3.4539
.073 M= 1681
. ooo80 M= . co18

3. 6238=log. 37. 48 _
To find the natural logarithm of 0.00748: The common logarithm is 3.87390, which
may be written 0.87390—3. Entering the table we find
0.87 M=2.00325 —3 M=-6.9078
.0039 M= .008¢8

sum 2.0122
—6. goy8
—4. 8956 =mnatural log of 0.c0748
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TABLE 6.—For Use in Connection with f{’{g"’” (118), (119), (123), (124), (125),

an

a1 k 14n ks 4h ki 14n ks
(1] 0 1] 1] 0.6 0.035 0.6 0. 247
0.1 0. 001 0.1 0.043 g . 045 7 . 283
o2 004 2 -086 '8 -057 8 .18
.3 . 009 .3 128 .9 . 069 9 .351
<4 1016 7 169 1.0 L082 1.0 .38
.5 . 025 .5

TABLE 7.—Values of k in Formulas (127) and (146)

n k n k n k n k
2 0 6 1.18 11 2.22 16 2.85
3 0.308 T 1.43 12 2.37 17 2.95
4 .621 -] L.66 13 2.51 18 3.04
5 - 906 9 1.86 14 2.63 19 3.14

10 2.05 15 2.74 20 .4

CALCULATION OF INDUCTANCE
66. GENERAL

In this section are give.n formulas for the calculation of self and
mutual inductance in the more common cireuits met with in prac-
tice. The attempt is here made, not to present all the formulas
available for this purpose, but rather the minimum number re-
quired, and to attain an accuracy of about one part in a thousand,
So far as has seemed practicable, tables have been prepared to
facilitate numerical calculations. In some cases, to render inter-
polation more certain, the values in the tables are carried out to
one more significant figure than is necessary. In such instances,
after having obtained the required quantity by interpolation from
a table, the superfluous figure may be dropped. In all the tables
the intervals for which the desired quantities are tabulated are
taken small enough to render the consideration of second differ-
ences in interpolation unnecessary.

Most of the formulas given are for low frequencies, this fact being
indicated by the subscript zero, thus L,, M,. The high-frequency
formulas are given where such are known. Fortunately it is
possible by proper design to render unimportant the change' of
inductance with frequency, except in cases where extremely high
precision is required.

' The usual unit of inductance used in radio work is the micro-
henry, which is one millionth of the international henry.** The

' ®The constants in the formulas for inductance given here reler to absolute units, To reduce to in
national units multiply by o.00048. Since, however, an accuracy of the order of only one partina
is sought here, it will not be necessary to take this difference into account,
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henry is defined as the inductance “in a circuit when the electro-
motive force induced in this circuit is one international volt, while
the inducing current varies at the rate of one ampere per second.”
1 henry =1000 millihenries=10® microhenries=10° cgs electro-
magnetic units.

In the following formulas lengths and other dimensions are
expressed in centimeters, unless otherwise stipulated, and the
inductance calculated will be in microhenries.

Logarithms are given, either to the natural base ¢ or to the
base 10, as indicated. The labor involved in the multiplication
of common logarithms by the factor 2.303 to reduce to the corre-
sponding natural logarithms will be very materially reduced by
the employment of the multiplication table, Table s, page 241,
which is an abridgement of the table for this purpose usually given
in collections of logarithms.

All of these formulas assume that there is no iron in the vicinity
of the conductor or circuit of which the inductance is to be calcu-
lated. Thus, the formulas here given can not be used to calculate
the inductance of electromagnets.

A much more complete collection of inductance formulas with
numerical examples is given in the Bulletin of the Bureau of
Standards, 8, pages 1-237; 1912; also known as Scientific Paper
No. 169.

67. SELF-INDUCTANCE OF WIRES AND ANTENNAS
STRAIGHT, ROUND WIRE

If [ =length of wire
d = diameter of cross section
p =permeability of the material of the wire

L,=0.002! [log. %— 1 -+-‘;i:| microhenries (x28)

=0.002!/ [2.303 log,, %— 1 +:_—‘:| microhenries (129)
For all except iron wires this becomes
L,=0.002l [2.303 log,o 421 - 0.75] (130)

For wires whose length is less than about 1000 times the diameter

of the cross section (—f—; < IOOO), the ter::u;f'%C should be added inside

the brackets. These formulas give merely the self-inductance
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of one conductor. If the return conductor is not far away, the
mutual inductances have to be taken into account (see formulas
(134) and (136)).

As the frequency of the current increases, the inductance
diminishes, and approaches the limiting value

Lo =0.002] [2.303 log,, g~ I:I (131)

which holds for infinite frequency.
The general formula for the inductance at any frequency is

L =o0.002! [2.303 log,, g— 1 +,u6] (132)

where & is a quantity given in Table 8, page 282, as a function of »

where
ac-c'-mosd‘/ﬁ—@c (133)
P
f=frequency.

p=volume resistivity of wire in microhm-centimeters
po=same for copper
p=1 for all except iron wires.
For copper at 20° C, %,=0.1071 d .
The value a. of x for a copper wire 0.1 cm in diameter at different
frequencies may be obtained from Table 19, page 311. Fora copper
wire d cm in diameter x,=10 d a. and for a wire of some other

material x=10d a, ,u&-

The total change in inductance when the frequency of the
current is raised from zero to infinity is a function of the ratio of
the length of the wire to the diameter of the cross section. Thus,
the decrease in inductance of a wire whose length is 25 times the
diameter is 6 per cent at infinite frequency; and for a wire 100 ooo
times as long as its diameter, 2 per cent.

Example.—For a copper wire of length 206.25 cm and diameter
0.25 cm at a wave length of 600 meters, that is f = 500 0oo, the value
of z is 18.93, and from Table 8, §=0.037.

p=1, 43’:*“33'00. log,, 3300=3.51851



Radio Instrumenis and Measurements 245

(From Table 5)

loge 3300 =8.0590
414
L

8.1016
For zero frequency
L,=0.4[8.102 — 1 4+0.25] = 2.941 microhenry
For f = 500 000
L=0.4[8.102—1 40.037]=2.856 microhenry
a difference of 2.9 per cent out of a possible 3.4 per cent.

For an iron wire of the same length and diameter, assuming a
resistivity 7 times as great as that of copper, and a permeability

of 100, the value of x 15.‘/ 7 times as great as for the copper

wire, or 71.5, and for this value of x,
8 =0.010 (Table 8)
L,=0.4[32.10]=12.84 ph
L =0.4[8.102] =3.24 ph at 500 000 cycles.

The limiting value is L o =2.84 ph.
TWO PARALLEL, ROUND WIRES—RETURN CIRCUIT

In this case the current is supposed to flow in opposite direc-
tions in two parallel wires each of length / and diameter d. Denot-
ing by D the distance from the center of one wire to t.he center
of the other,

D D
L =0.004 1[2.303 log;e 2—d—— T+p5:| (134)

The permeability of the wires being g, and & being obtained from
(133) and Table 8, page 282. For low frequency é=o0.25. This
formula neglects the inductance of the connecting wires between
the two main wires. If these are not of negligible length, their
inductances may be calculated by (132) and added to the result
obtained by (134), or else the whole circuit may be treated by
the formula (138) for the rectangle below.
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STRAIGHT RECTANGULAR EAR

Let I =length of bar.
b, c =sides of the rectangular section.

L,=0.002 ! r2.303 log,, E%—% +0.5 +0.2235 (—b—;-i)] (135)

The last term may be neglected for values of / greater than
about 50 times (b+c).
The permeability of the wire is here assumed as unity.

RETURN CIRCUIT OF RECTANGULAR WIRES
I the wires are supposed to be of the same cross section, b by
¢, and length I/, and of permeability unity, and the distance be-
tween their centers is D,

D D b+
L,=0.0041 [2.303 log,, b—-l-c+§_-f +0.2235 (_li)] (136)
L
"\ ————
oy e ;
— .

F1G. 178.—The two conductors
of a return circuit of recian~
gular wires

For wires of different sizes, the inductance is given by L,=L,+
L,—2M in which the inductances L, and L, of the individual wires
are to be calculated by (135), and their mutual inductance M by
(174) below.

SQUARE OF ROUND WIRE

If a is the length of one side of the square and the wire is of
circular cross section of diameter d, the permeability of the wire
being u,

2a d '
L =0.008 a[2.303 10gmjj+33—0-774 +p6:| (137)
in which & may be obtained from Table 8 as a function of the

argument x given in formula (133). The value of § for low fre-
quency is o.25, and for infinite frequency is o.



Radio Instruments and Measurements 247

RECTMGII.BOIRO‘DID WIRE
Let the sides of the rectangle be a and g, the diagonal

g=1/a’ +a and d=diameter of the cross section of the wire.
Then the inductance at any frequency is

L =0.00921 [(a +a,) logmL';a‘- —alogy, (a +9) —a,log, (a +9)]
+0.004 [ud (a+a,) +2 (g+3d/2) —2 (a+a,)] (138)

The quantity & is obtained by use of (133) and Table 8. Its
value for zero frequency is 0.25, and is o for infinite frequency.
RECTANGLE OF RECTANGULAR-SECTION WIRE

5
—_—

i 1
|

FiG. :79.I—Rec£angl¢ of rectan-
gular wire
Assuming the dimensions of the section of the wire to be b
and ¢, and the sides of the rectangle a and a,, then for nonmag-
netic material the inductance at low frequency is

L,=0.00921 | (a+a,) log,, 20% _ g 1og,, (¢ +9) —a, logy, (a;+9)
b+c

+0.004 [29 —Ei;i‘ +0.447 (b +c)] (139)
where g=./a*+a,.
INDUCTARCE OF GROUNDED HORIZONTAL WIRE

If we have a wire placed horizontally with the earth, which
acts as the return for the current, the self-inductance of the wire
is given by the following formula, in which

I =length of the wire

h =height above ground

d = diameter of the wire

u=permeability of the wire

3 =constant given in Table 8, to take account of the effect of

frequency (see p. 282).

1 4h L+ B+ s
L - 0.004605 I [iogl’o—'d" + log“ {mﬁ

40,002 [_J;=+4hz__.\{p+dq4+pla—2h+-;{'] (140)
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which, neglecting -;—i , as may be done in all practical cases, may be

written in the following forms convenient for calculation:

For ?21,
. L=o.0021 [2.3026 log,, %HP—H.;&] (141)
and for 21,
L=o0.0021 [2.3026 log,, %’E—-Q-i-pﬁ] (142)

the values of P and Q being obtained by interpolation from
Table g, page 283.

Mutual Inductance of Two Parallel Grounded VWires.—The two
wires are assumed to be stretched horizontally, with both ends
grounded, the earth forming the return circuit.

Let I=length of each wire

d =diameter of wire
D =distance between centers of the wires
h=height above the earth

Then jinarinl
5 VD ol S
M =0.004605 ! [IOgm —p  tlog {z +yE+D + 4h’]:|
Qerrer

see p.2 10002 LIVF+D 4R —FAD +D— D' 1 41]  (143)

3
which, if we neglect ?—, and (f—h), may be expressed in the follow-

ing forms:
For ?EI,
M =o0.002 [2.3026 log,, g‘—P+% (144)
and for -2-%21,
M =0.0021 [2.3026 log,, -g—Q +1—;] (145)

the values of the quantities P and Q being obtained by interpo-
lation from Table g.
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INDUCTANCE OF GROUNDED WIRES IN PARALLEL

The expressions for the inductance of n grounded wires in par-
allel involve the inductances of the single wires and the mutual
inductances between the wires. Even in the case that the wires are
all alike and everly spaced, these expressions are very complicated.

The following approximate equation, which neglects the resist-
ances of wires, is capable of giving results accurate to perhaps 1
per cent, for n wires of the same diameter evenly spaced.

Calculate by equations (141), (142), (144), or (145) the induc-
tance L, per unit length of a single wire and the mutual induc-
tance M, per unit length of any two adjacent wires using, of
course, the actnal length in the ‘calculation of the ratios
?’ %la etc. Then
Li+(n—1) M,

JL=1
n

—0.001 k] (:46)
in which # is the number of wires in parallel and k is a function
of n tabulated in Table 7, page 242.

Ezample—An antenna of 1o wires in parallel, each wire 155
feet long and % inch in diameter, spaced 2.5 feet apart, and sus-
pended at a height of 64 feet above the earth. Find the inductance
at 100 000 cycles per second.

2h 128 3 P ;
We have here ;2 -E‘S——O.Szé, and using this as argument in
Table 9, P =0.6671.
" From (133) x=8.07, and thence from Table 8, § =0.087.

f: =256 X 12 X%Q =32 768, logl.ia"h* =4.515
2h 128 2h
ﬁu—z-—s-sx.z Iog,,—ﬁ =1.709

Then, from formulas (141) and (144)

L, =0.002[4.515 X 2.3026 —0.667 +0.087]
=0.01963 ph per cm

M, =0.002[1.709 X 2.3026 —0.667 +0.016])
=0.006568 ph per cm.

486861 O-58—17
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From Table 7 we find for n =10, k=2.05, so that the inductance
as calculated by (146) is

£ saybinscin & 0.01963 +?(§o.006568) _0‘00205]

= 4727 [0.00582] =27.4 ph.

CIRCULAR RING OF CIRCULAR SECTION

If @ =mean radius of ring
d=diameter of wire, the inductance at any frequency is,

except for values of % >o0.2,

L =0.01257 a {2.303 log,, 60_"2 +p.5] (147)
in which & will be obtained from (133) and Table 8, page 282.
Its value for zero frequency is o0.25.

TUBE BENT INTO A CIRCLE

Let the inner and outer diameters of the annular cross section
of the tube be d, and d,, respectively, and the mean radius of the

circle a, then neglectmg and — d”

16a d,?
L,=o0.01257 a| 2.303 log,, &, VST —dd

o L el SR 8
+2.303 @ —a logyo dx] | (148)

For infinite frequency this becomes

16a
Lo =0.012570 [2.303 logm-z- - z] (149)
68. SELF-INDUCTANCE OF COILS
CIRCULAR COIL OF CIRCULAR CROSS SECTION

For a coil of n fine wires wound with the mean radius of the
turns equal to a, the area of cross section of the winding being a
circle of diameter d,

L,=o0.01257 an® [2.303 10g,,-l—g—a— 1.75} (150)
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This neglects the space occupied by the insulation between the
wires.
TORUS WITH SINGLE-LAYER WINDING

A torus is a ring of circular cross section (doughnut shape).
Iet R =distance from axis to center of cross section of the winding
a=radius of the turns of the winding
n =number of turns of the winding

L,=o0.01257 n*[R — /R*—a?] (151)

F16. 180.—Torus of single layer
winding

TOROIDAL COIL OF RECTANGULAR CROSS SECTION WITH SINGLE-LAYER WINDING
A coil of this shape might also be called a circular solenoid of

rectangular section.
Let r, =inner radius of toroid (distance from the axis to inside

of winding)
r;=outer radius of toroid (distance from axis to outside of
winding)
h =axial depth of toroid.
Then L, =0.004606 n* h log“;—’- (152)
> 1

-+

Fi1c. 181.—Toroidal coil of rec-
tangular section with single
layer winding
The value so computed is strictly correct only for an infinitely
thin winding. For a winding of actual wires a correction may be
calculated as shown in Bulletin, Bureau of Standards, 8, page
125; 1912. The correction is, however, very small.
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SINGLE-LAYER COIL OR SOLENOID
An approximate value is given by

L_w K (153)

where »=number of turns of the winding, a =radius of the coil,
measured from the axis to the center of any wire, b=Ilength of
coil =n times the distance between centers of turns, and K is a

function of % and is given in Table 1o, page 283, which was calcu-

lated by Nagaoka. (See Bulletin, Bureau of Standards, 8, p.
224, 1912.) For a coil very long in comparison with its diameter,
K=1.

Formula (153) takes no account of the shape or size of the cross
section of the wire. Formulas are given below for more accurate
calculation of the low-frequency inductance. The inductance
at high frequency can not generally be calculated with great
accuracy. Formulas which take account of the skin effect, or
change of current distribution with frequency, have been devel-
oped. The change is very small when the coil is wound with
suitably stranded wire. The inductance at high frequencies
depends, however, also on the capacity of the coil, which is gen-
eraily not calculable. If the capacity is known, from measure-
ments or otherwise, its effect upon the inductance can be cal-
culated by
L,=L [1+«* CL(10)-"] (154)

where L, is the apparent or observed value*of the inductance, C
is in micromicrofarads, and L in microhenries. The inductance :
of a coil is decreased by skin effect, and is increased by capacity.
The changes due to these two effects sometimes neutralize each
other, and in general, formula (153) gives about as good a value 4
of the high-frequensy inductance as can be obtained.
 Round Wire.—The low-frequency inductance of a coil wound §
with round wire can be calculated to much higher precision than 3
that of formula (153) by the use of correction terms. Formula}
(153) gives strictly, the inductance of the equivalent current$
sheet, which is a winding in which the wire is replaced by an ex-#
tremely thin tape, the center of each turn of tape being situated]
at the center of a turn of wire, the edges of adjacent tapes bem 4?
separated by an infinitely thin insulation. The inductance of th -'_
actual coil is obtained from the current-sheet inductance a$
follows:

e e e, R L i s
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Putting I, =inductance of equivalent cylindrical current sheet,
obtained from (153)
L, =inductance of the coil at low frequencies
n =number of turns
a=radius of coil measured out to the center of the wire
D =pitch of winding =distance from ceuter of one wire
to the center of the next measured along the axis
b=length of equivalent current sheet =nD
d=diameter of the bare wire
Then Lo=L,—0.01257 na (A +B) microhenry (155)
in which A is constant, which takes into account the difference in
self-inductance of a turn of the wire from that of a turn of the
current sheet, and B depends on the difference in mutual induc-
tance of the turns of the coil from that of the turns of the cusrent
sheet. Thequantities A and B may be interpolated from Tables 11
and 12, page 284, which are taken from Tables 7 and 8 of Bulletin,
Bureau of Standards, 8, pages 197-199; 1912. (Sci. Paper 169.)
Example.—A coil of 400 turns of round wire of bare ‘diameter
0.05 cm, wound with a pitch of 10 turns per cm, on a form of such
a diameter that the mean radius out to the center of the wire is
10 cm.

a=10, b=nD =40, n=400, D—o.x,%_o,s

‘The value of K corresponding to Zb_“. =0.5is0.8181 (Table 10).

L,=0.03948 (400)? % 0.8181 =0.03948 X 400 000 X 0.8181

=12 919 microhenries
=0.012919 henry

log 0.03948 =Z.59638

log 400 000 = 5.60206

log 0.8181 =1.91281

4.11125

Entering Tables 11 and 12 with% =0.5, n=400, we find

A=-0.136
B= o0.335
A+B= o0.199

The correction in (155) is, accordingly
0.01257 (400) 10 (0.199) =9.99 microkenries.
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The total inductance is 12 919 — 10 =12 gog microhenries.

Example.—A coil of 79 turns of wire of about 0.8 mm bare
diameter. The mean diameter is about 22.3 cm and, for deter-
mining the pitch, it was found that the distance from the first
to the 79th wire was 9.0 cm.

We have, then,

a=11.15, D=%§}=O'IIS’ b=nD =70X0.115=0.12

2a_ d o0.08
i D_o.ns"()'_7

The value of K is given by Table 10 as 0.4772, so that

(r1.15)? : y
L,=0.03948 (79)? aa 0.4772 =1602.8 microhenries
log 0.03948 =2. 59638 P d
or =79, + =0.7, Tables 11
2 log 79 =23.79526 7? B
2log 11.15=2.00454 : and 12 give
log 0.4772=1.67870 A =o0. 200
e B =o0.326
4.16488
log  9.12=0.95999 (A +B) =o0. 526
3. 20489

The correction is 0.01257 X 79 X 11.15 X 0.526 = 5.8 microhen-
ries, and the total is 1597.0 microhenries. The measured in-
ductance of this coilis 1595.5.

COIL WOUND WITH WIRE OR STRIP OF RECTANGULAR CROSS SECTION

Approximate values may be obtained for a coil wound with
rectangular-section wire or strip by using the simple formula
(153), as already explained. More precise values for the low-
frequency inductance could be calculated in the same manner
as for round wire above, using different values for A and B. It
is simpler, however, to use formula (156) below, which applies
to the single-layer coil if the symbols are given the following
meaning: a=radius measured from the axis out to the center of
the cross section of the wire; b=the pitch of the winding D,
multiplied by the number of turns #; ¢=w=the radial dimen-
sion of the wire; #=the axial thickness of the wire. The cor-
rection for the cross sectign of the wire is obtained by using

formulas (161) and (162), using y = g, T =It§'
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Example.—A solenoid of 30 turns is wound with ribbon 3{ inch’
by ¥ inch thick, with a winding pitch of { inch to form a sole-
noid of mean diameter 1o inches.

Here a=5X2.54=12.70 cm, w=c=i(z.54) =0.635 cm
1 . 1
: b—30><z(2.54)=-19.o5 cm, c/b=3—0, D=0.635
I -
t=1¢(2.54)
for the equivalent coil. Solving this by Rosa’s formula (156),
usinggg-g, K =0.6230 (Table IO),—i =30, B, = 0.3218, we find

L,=182.55 ph. The value obtained by Stefan’s formula (157) is
very slightly in error, being 182.5.

To obtain the correction, we have v—%- T; f“i, and therefore

A, =log, % =0.470

a8 a8 ay L
B,=-2 [30 0.060 + 30 0.018 + = 0.008 +30 0.005
ol e +—23- 0.001]= —0.188
30

so that the correction is (0.01257) 30 (12.70) (0.282)=1.35 wh,
and the total inductance is 183.9.

INDUCTANCE OF POLYGONAL COILS

Such coils, instead of being wound on a cylindrical form, are
wrapped around a frame such that each turn of wire incloses an
area bounded by a polygon.

No formula has been developed to fit this case, but it is found
that the inductance of such a coil (when the number of sides of
the polygon is fairly large) may be calculated, within 1 per cent,
by assuming that the coil is equivalent to a helix, whose mean
radius is equal to the mean of the radii of the circumscribed
and inscribed circles of the polygon. That is, if » = the radius of
the circumscribed circle, Fig. 182 (which can be measured without
difficulty for a polygon for which the number of sides N is an
even number), then the modified radius a,=r cos’%-r is to be used
for a in the formulas (153) and (155) of the preceding section.®

@ For further information regarding polygonal coils reference may be made to Scientific Papers of the

Buresu of Standards No. 468, by F. W. Grover, Formulas and Tables for the Calculation of the Induct:
of Coils of Polygonal Form, 19a3.
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Ezamples.—The following table gives the results obtained by
this method for some 12-sided polygonal coils, the measured
inductance being given for comparison. For N =12, a,=0.983r.

Le Lo
Coll r e - D ] calculsted | measured

uk nk
A 6.35 6.24 3 032 7.3 630 6L7
B 825 810 28 .82 9.0 124.7 126.3
c 1143 11.22 52 212 iL0 638.0 630.5
D 1. 43 11.22 M 318 10.8 274.9 274.6
E 1197 1373 4 .11 131 1119.5 11155
4 19.05 1871 17 .158 185 5399 5387

MULTIPLE-LAYER COILS
Different formulas are used for long than for short coils. For
long coils of few layers, sometimes called multiple-layer solenoids,
the inductance is given, approximately, by

0.01257n%ac

Ly=L.— =3~ (0.693 +B.) (156)

TATARRRRRRANAR

Fia. 182.—Polygonal coil
where L,=inductance, calculated by (153), letting
n=number of turns of the winding
a=radius of coil measured from the axis to the center of
cross section of the winding
b=length of coil =distance between centers of turns,
times number of turns in one layer
c=radial depth of winding =distance between centers of
two adjacent layers times number of layers
B, =correction given in Table 13, page 284, in terms of the

il
ratxo;
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Values obtained by this formula are less accurate as the ratio
¢/a is greater, and may be a few parts in 1000 in error for values of

this ratio as great aso.25,and g as great as 5. For accurate results

a correction needs to be applied to L.(see (159) below).

The solution of the problem for short coils is based on that for
the ideal case of a circular coil of rectaagular cross section. Such
a coil would be realized by a winding of wire of rectangular cross

T e

‘1—0"-

ot )

Axis

%e
q
F1G. 183.—Muliiple-layer coil with
winding of rectangular cross
section
section, arranged in several layers, with an insulating space of
negligible thickness between adjacent wires.
Let a =the mean radius of the winding, measured from the
axis to the center of the cross section
b =the axial dimension of the cross section
¢ =the radial dimension of the cross section
d = /b4 ¢ = the diagonal of the cross section
n =number of turns of rectangular wire.
Then, if the dimensions b and ¢ are small in comparison with a, .
the inductance is very accurately given by Stefan’s formula, which,
for b>c, takes the form

-

] B b?
L.,=o0.01257an? (1 +3:m’ 963 log. d }‘: 60,?:]
g b
=0.01257an? 2~303(I +ﬁ+m) logy, j*?n +@?::|(157)

where y, and y, are constants given in Table 14, page 285.
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For disk or pancake coils, b <c, and the formula becomes

Ly=o0.01257an*| | 1 +—— b e e lo, y ¥y
u . 57 3203 96a? Ee d 1 160’ 3

=0.01257an’ 2.303( +%+9&,) ogu, d e (% g;,?s (158)
in which y, and y, are given in Table 14, page 285.

The constant y, is the same function of both b/c and ¢/b, so that
its argument, in any given case, is the ratio of the smaller dimen-
sion to the larger; y, and y, are functions of ¢/b and b/c, respect-
ively, the arguments being not greater than unity in either case.

The error due to the neglect of higher order terms in g and Ein-

formulas (157) and (158) becomes more important the greater the
diagonal of the cross section is, in comparison with the mean
radius, but even in the most unfavorable case, ¢/b small, the inac-
curacy with values of the diagonal as great as the mean radius
does not exceed one-tenth of 1 per cent. The accuracy is greater
with disk coils than with long coils, and best of all when the
cross section is square.

For long coils (those in which the length b is greater than the
mean radius a), the error of formula (157) becomes rapidly greater.
In cases where both dimensions of the cross section are large, in
comparison with the mean radius, no formulas well adapted to
numerical computations are available, but this is not to be regarded
as a case of practical importance in radio engineering.

COIL OF ROUND WIRE WOUND IN A CHANNEL OF RECTANGULAR CROSS SECTION

If we suppose that the distance between the centers of adjacent
wires in the same layer is D,, and that the distance between the
centers of wires in adjacent layers is D,, then the dithensions of the
cross section of the equivalent coil with uniform distribution of
the current over the cross section will be given by b =n,D,, ¢ =n,D,.
where 7, and =, are, respectively, the number of turns per layer,
and the number of layers.

The inductance of the equivalent coil calculated by formulas
(156), (157), or (158), using these dimensions and the same mean
radius as the actual coil, is a very close approximation to the
value for the actual coil, unless the percentage of the cross section
occupied by insulating space is large.®

& For further iu.tom.;tim regarding circular coils of rectangular cross section reference may be made to
Scientific Papers of the Bureau of Standards No. 455, by F. W, Grover, Tables for the Calculation of the.
Inductance of Circular Coils of Rectangular Cross Section, 1913,
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When such is the case, the correction to the inductance, given
in the following formula, may be added:

AL =o0.01257 an [2.30 log,o Jg—+o.138 +E:| (159)

in which D =distance between centers of adjacent wires

d =diameter of the bare wire

E =a term depending on the number of turns and their
arrangement in the cross section. Its value may with sufficient
accuracy be taken as equal to 0.017. The correction in (159)
should, in any case, be roughly calculated, to see if it need be
taken into account.

Example—Suppose a coil of winding channel b=c=1.5 cm,
wound with 15 layers of wire, with 15 turns per layer, the mean
radius of the winding being 5 cm. Diameter of bare wire =0.08 cm.

In this case formula (158) gives

n =225, d*=4. 5,§;=4—; =0.18, b/fc=1, ¥, =0.8483, ¥, =0.816
1 8
L.=(o. : { MQ_]
(0.01257)(5) (225) [ 56 log. Yo
—0.8483 +2:3% g) 816]
log 8 =0.90309 2.76310% 1.00375 log ,8—; = 2.9478
tlog 0.18 =7.62764  .17269 —y,=— .8483
: .00104
8 é ” 2. 0995
loguqa =1.27545 2.93683 =log, -39 09 g 0-816= .0046
2. 104
log,, 2.104 =0.32305
2 logyy 225  =4.70436
logy, 0.01257 = 2.09934 L, = 6694 microhenries.
logy, 5 =0.69897
3.82572
The correction for insulation is found from (159), as follows:
D ei 1
i 4, 10311;4 =0.09691, og.-»-o 223
0.138
E =o0.017%
0.378

correction = (0.01257) (5) (225) o.378=3.34£
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The total inductance is 6697 microhenries =6.697 millihenries.

The correction could, in this case, have been safely neglected.

Example.—A coil of 10 layers of 100 turns per layer, mean
radius =10 cm, the wires being spaced o.1 cm apart.

For this case n=1000, a=10, b=10, c=1.

2a

Using formula (156) with 5 =2 K =o0.5255, b/c=10

Pl ey
L,=(0.03948) IP%E-—O. 5255 =207 400 microhenries.

For the correction, Table 13 gives for i’—= 10

0.693
B,=o0.279

0.973
so that the correction = (0.01 257)10‘%%0.973 =12 200 and the

inductance is

L, =207 400—12 200 =195 200 microhenries
=195.2 millihenries.

The formula (157) gives a vé.lue about one part in goo higher
than this.

INDUCTANCE OF A FLAT SPIRAL

Such a spiral may be wound of metal ribbon, or of thicker
rectangular wire, or of round wire. In each case, the inductance
calculated for the equivalent coil, whose dimensions are measured
by the method about to be treated, will generally be as close as
1 per cent to the truth, the value thus computed being too small.

If n wires, Fig. 184, of rectangular cross section are used, whose
width in the direction of the axis is w, whose thickness is ¢, and
whose pitch, measured from the center of cross section of one turn
to the corresponding point of the next wire is D, then the dimen-
sions of the cross section of the equivalent coil are to be taken as
b=w, c=nD, and as before d =B +¢2.

The mean radius of the equivalent coil is to be taken as a=
o, + Y% (n—1)D, the distance a, being one-half of the distance AB
(see Fig. 185) measured from the innermost end of the spiral
~across the center of the spiral to the opposite point of the inner-
most turn. /

The inductance L, of the equivalent coil is to be calculated
using the above dimensions in (158), assuming for » the same
number of turns as that of the spiral.
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If round wire is employed, the same method is used for obtain-
ing the mean radius a and the dimension ¢, but it is more con-
venient to take b as zero, and use for the calculation of the induc-
tance of the equivalent coil the special form of (158) which follows
when b is placed equal to zero.

L,=0.01257 an’{log. 5 960’(1 g.Sa 43 }

" 8a 1
. =0,01257 n'a {2.303 logm?—-—z—

c 8a
s + 36D (2 303 lOgno_‘+43 } (160)
'[ D
B -
=ne
C haeeed
Fic. 184.—Sectional view of flat Fi16. 185.—Side view of flat spiral

spiral wound with metal ribbon

The correction for cross section may, in each case, be made by
adding o.01257 na (4,+B,) to the value of inductance for the
equivalent coil.

For round wires the quantities A, and B, may be taken as
equal to A and B in the Tables 11 and 12, page 284, just asin the
case of single-layer coils of round wire.

In the case of wire or strip of rectangular cross section the matter
is more complicated on account of the two dimensions of the cross
section.

If we let D-v and =7, then the quantities involved in the

D
calculation of A, and B, may be made to depend on these two
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parameters alone. The equations are then with sufficient accu-
racy:

4, log.—5=2 303 logye -t (16%)

v+'r
Bl=_2[n 151s+ 77 5“+ 3314"‘- . -+;;51n:| (162)

in which 3,;, d,,, etc., are to be taken from Table 15, page 28s.
Example.—For a spiral of 38 turns, wound with copper ribbon
whose cross sectional dimensions are 3/8 by 1/32 inch, the inner
diameter was found to be 2¢,=10.3 cm and the measured pitch
was found to be 0.40 cm,
The dimensions of the equivalent coil of rectangular cross sec-
tion are, accordingly,

b=3/8 inch=o0.953 cm,

a"'**z*'-'+—37 (0.4) =12.55,

c=38 X 0.40=15.2.
For this coil b/c=0.0627 which gives (Table 14) y,=0.5604,

da: 8a
¥3=0.599, 3= 1.472, log, ?=1.886'

Hence from (158),
= (0.01257) (12.55) (38)?[1.015(1 886) —0.5604 +0.055]
= 323.3 microhenries.
For this spiral »=2.38, 7=0.198

8
A, =2.303 10g,.,3 28—0 270
B, = -—3[37 (o 028)+38 (o 013)+ (o oo7)+ (0004)

33 32 31 32 T
+38 (0.003) +38 (0.002) +38_(o.ooz) +38 (o.001) + :|
=—o0.112, A,+B,=0.159

and the total correction is (0.01257) (38) (12.55) (0.159) =0.95 uh
so that the total inductance of the spiral is'324.2 microhenries.
The measured value was 323.5.

INDUCTANCE OF A SQUARE COIL

Two cases present themselves
(a) A square coil wound in a rectangular cross section.
(b) A square coil wound in a single layer.
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MULTIPLE-LAYER SQUARE COIL

Let a be the side of the square measured to the center of the
rectangular cross section which has sides b and ¢, and let # be the
total number of turns.

Then

L,=0.008 an? [2.303 log,e ba? +0.223513_3-_c +o.726:| (163)
If the cross section is a square, b =¢, this beéomes
L, =0.008 an? [2.303 log,e % +0.447 E +o.o33] (164)

A correction for the insulating space between the wires may be
calculated by equation (159) if we replace 0.01257 an therein by

Fio. 186.—Multiple-layer /

square coil with winding P16, 187.—Single-layer square coil
of rectangular cross sec-
tion

0.008 an. This correction is additive, but will be negligible unless
the insulating space between the wires is large.

SINGLE-LAYER SQUARE COIL

Let a=the side of the square, measured to the center of the wire
n =number of turns
D =pitch of the winding, that is, the distance between the
center of one wire and the center of the next (Fig. 187)
b=nD (See p. 252.)



264 Circular of the Bureau of Standards
Then
L,=0.008 an? [2.303 log,, % +0.726 +0.2231 EJ
—0.008 an [A + B] (165)

in which A and B are constants having the same meaning as in
(155) to be taken from Tables 11 and 12, if the wires are of round
cross section. If the wire is a rectangular strip having a dimen-
sion ¢ along the axis of the coil and w perpendicular to it, calculate
L, by (163) and correct for cross section by (161) and (162) and
Table 15, using 0.008 an (A, +B,).

Example.—Suppose a square coil, 100 cm on a side, wound in a
single layer with 4 turns of round wire, 0.1 cm bare diameter, the
winding pitch being o.5 cm.

In this case n=4 d=o0.1 b=4X0.5=2.0
@ =100 D=o0.5

The main term in formula (165) gives

0.008 X 100 X 16 [2.303 log;, %0+o.726+0.004:l

=12.8[3.912+40.726 +0.004] = 59.42 microhenries

Entering Tables 11 and 12, page 284, with% -=-::—'; =0.2 and n=4,

A= —1.053
B= o.197

sum = —0.856

0.008 an [ —0.856] = —2.74 microhenries,
so that L, =59.42 +2.74 = 62.16 microhenries.

This result may be checked by computing the self-inductance
L, of a single turn and the mutual inductances M,, of the indi-
vidual turns, and summing them up.

Thus we find
4 L ,=22.65
6M,,=21.74

4M,,=12.29
2M1‘ = 5.50

62.18 microhenries,

Formula (165) applies only when the length b is small com-
pared with the side of the square a.



Radio Instruments and Measurements 265
RECTANGULAR COIL OF RECTANGULAR CROSS SECTION

Let the sides of the rectangle be a and a,, the dimensions of the
cross section b and ¢, and the number of turns n, g = 1/&‘ +a?

L,=0.00921 (a +a,) n? [log 10 l%%_ﬁ log,, (@ +¢)

c+a,1°gu @+9) |+o00s @+a) m [ oL

(b+¢)
R 7(a+a,)] (166)

Correct for cross section by (159) for round wire.

SINGLE-LAYER RECTANGULAR COIL

Let a and a, be the sides of the rectangle, D the pitch of the
winding, b =nD, and n the number of turns. Then

'S
p
r

o
D
P
TF
p—

F10. 188.—Single-layer rectangular coil.

2
L,=0.00921 (a+a,) n? [log,,%—&—} log ,, (@ +9)

2
10g 0 (@ +g)]+ooo4 (a+a) m [ 2L

0+G

5 erTror .
~—0.447 a_!_a’ —0.004 (a+a) n (A+B) (167 500 p.2 |

1
i

where A and B are to be taken from Tables 11 and 12, if the coil
is wound with round wire. If wound with strip, take b =nD and
¢ =radial thickness of strip. Calculate L, by (166) and correct
for cross section by (161), (162), and Table 15. g

486861 O-58—18
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FLAT RECTANGULAR COIL

Let a, and a’, be the outside dimensions of the coil, measured
between centers of the wire, D the pitch of the winding, meas-
ured between the centers of adjacent wires (Fig. 189), » the num-
ber of complete turns, d the diameter of the bare wire, ¢=nD.

g=diagonal = +/a’+a? a=a,—(n—1)D, a,=a’c— (n—1)D.

Then:
Lo=L,~0.004 n{(a+a,) (A +B)
where

L.=0.009210 %% (a+ a,)log,.?—c;& —alog,(a+g)

—a, log,,(a, +g)]+o.oo4 n{zg—a_;a‘+o.447 c| (168)

and A and B are constants to be taken from Tables 11 and 12
for round wire. If the coil is wound with rectangular strip, put
b=width of the strip, and ¢=nD, and calculate L, by (166)
using for A and B the values A, and B, of (161) and (162) Table 15.

FLAT SQUARE COIL

If a, be here the side of the square, measured between centers
of two outside wires, and @¢=a,~ (n—1)D, the nomenclature
being as in the previous section,

ag

5
O

D—

F1G. 189.—Flat square coil.
L,=L,—0.008 na (A+B)
in which
a c
L,=0.008 n’a [2.303 log,e = +0.2235 % + 0.726] (169)
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For round wire the constants A and B are given in Tables 11
and r2. If the coil is wound with strip proceed as for rectangular
flat coils of strip, above.

Examgple.—A coil of 4 turns of 0.22 cm stranded wire was found
to have @, =102 cm, the pitch of the winding being D = 2.25 cm.
Here

@=102 —3 X 2.25 =05.25
€=4X2.25=9.0

9525 40,22

Ly=0.008 X 16 X 95. 25[2 303 log,, 35 +o. 726]

9 .25
=16X0.762 [2.359 +0.021 +o.726]==37.87 uh
For

n=4 and %=z:—:§=o.098, Tables 11 and 12 give
A=-1.767, and B=o0.197

the correction is 0.008 X4 X95.25 (—1.570) = —4.79 uh so
that L,=37.87 + 4.79 = 42.66 microhenries.

The measured value, uncorrected for lead wires was 44.5
microhenries. _

DOUBLE FLAT RECTANGULAR COIL

Such a coil consists of two similar flat, rectangular coils, such
as are treated in the preceding sections, placed with their axes
in the same straight line, and their planes at a distance x apart.
The two sections of such a coil may be used either singly, or in
series, or in parallel.

The general method of treatment is to obtain the inductance
L, of the single sections by formula (168) or (166), as described
in the preceding sections, and the mutual inductance of the two
sections, as shown below.

Then when used in series L’=2(L,+M), and when used in

g et B ol

To obtain the mutual inductance, formula (183) or (184) for
two equal, parallel rectangles or squares, multiplied by the prod-
uct of the number of turns of the two, should be used, putting
for the dimensions of the rectangles a and @, as defined under
(168) and (169) and for the distance D in (183) or (184) a mod-
ified distance r given by the expression

r=kc, c=nD, (x/c small)
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in which

¥

%
c

I
12 ¢t

|

W [

o x L
2.303 log,.k =2.303 oy log,, +1rE.-— —g-z; - (170)

When x is not small in comparison with ¢, r will have to be cal-
culated by the equation

x LB A
lo r=£ 1 x+£(: - z—’) log,, (¢ +2%) (2c—tau l}_;
8io ¥ =5 108:0 = ¢ ) 198w v 2.303 (171)

When the distance x between the planes of the coils is chosen
equal to the pitch D of their windings, the calculation of their
inductance, when joined in series, may be obtained in a simpler
manner. Putting b=2D and n, =2n, the number of turns of the
two windings in series, .

L’ =0.008 n%a [2.303 log,e g—_?_—é+o.2235 I%E-!-o.?zé]
D
+0.008 7,a | 2.303 log,, g t o153 (x72)
for a square coil, and
7 , 2aa,
L’ =0.009210 n, [(a +a,) log,, m—alog,, (a+9)

- _:al +0.447(b +c)]

—a, logy, (a, + 9) :|'+ 0.004 n,? [29 S

D
+0.004 m(a+a,) [2-303 logyo 7 +o.153] (173)

for a rectangular coil
g=+a*+a,?, d=diameter of bare wire.

Example.—As an example of the use of these formulas, take
the case of an actual coil of two sections, each being a flat, square
coil of 5 turns of o.r2 cm wire, wound with a pitch 'of D=1.27
cm, the distance of the planes of the coils being x=1.27 cm.
The length of a side of the outside turn was ror cm. -

Putting =35, a =101 —4X1.27=95.9, ¢=5X1.27=6.35, and
d/D =o.1, formula (169) gives L,=66.28+6.14 =72.42ph, for a
single section.
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To obtain the mutual inductance, we find by (170) for

2.303 log, k= 2.303X0.04 (—0.699) +0.2 7 ——-‘2 - 2(0.04) - é(o.ooz 6)

= —0.0644 +0.6283 — 1.5 —0.06 —0.0001
= —0.9962

log,, &= —0.4326 =1.5674

k=0.3693 and 7 =0.3693 X 6.35 =2.344
Putting this value of » in place of D in (184) with a=95.9
iy 191.8X95.93
M =0.008 X5X 5| 2.303 X95.9 log,, (231'5 X 2_344) +135.62
—191.86 + 2.34] =56.82 ph

For the two coils in series, then
L' =2(72.42 4+ 56.82) =258.5 uh

and for the parallel arrangement

L o 12:42 1_56'82u64.6 o

The inductance of the coils in series may also be found by
putting a=95.9, b=6.35, c=2.54, #, =10 in (163) and (159) and
we find L =239.8+18.8=258.6 uk in agreement with the other
method. ' e

69. MUTUAL INDUCTANCE o

The following formulas for mutual inductance
hold strictly only for low frequencies. In gen-
eral, however, the values will be the same at high
frequencies. I

TWO PARALLEL WIRES OR BARS SIDE BY SIDE

Let ! =length of each wire or bar.
D =distance between centers of the wires.

¥ 1
The following expression is exact when the Fic. 190.—Two paral-

wires have no appreciable cross section, but is Jl wires side by side

sufficiently exact even when the cross section is large if / is
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great compared with D. Within these limits the shape is im-~
material,

AT
M =0.002 [2.3031 log,, H—‘/I’Jfﬁ — B+ D? +D] (174)

=0.002/ [2.303 log,, 12—;— I+ -—?] nearly. (175)

TWO WIRES END TO END WITH THEIR AXES IN LINE

Let the lengths of the two wires be / and m, their radii being
supposed to be small. Then,

M =0.002303 [l log,, ﬁ%ﬁ +m log,, : ';m] (176)

—
3 ——
N-—b—-(-———-—;-—-—'h-

]
I
i
Y i
A 1
' A i
]
|
1
]
I
1
L !
1
1
]
1
1
)
Jil
Ly |
F16. 191.—Two wires end to end F16. 192.—Two wires in same straight
in same straight line line but separated

TWO WIRES WITH THEIR AXES IN THE SAME STRAIGHT LINE BUT SEPARATED

Let their lengths be / and m and the distance between the nearer
ends be Z.
M =0.002303 [(I +m +Z) log,, ( +m+Z) +Zlog,, Z

= (4T) log,, QD ~ (e Dl ) 1D
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TWO WIRES WITH AXES IN PARALLEL LINES
. If AD, AD’, AC, AC’, etc., represent the distances shown in
the figure, the general formula is

D, x D
/
’
i
f/
f’ m
!
!/
,f
. /
C f f:’ p C
» Fi ,f
{ :” //. !
B -
/ II I/
/ ./ il
1 ¥ //,r’
i //'/
s -
,{’, e
A

F16. 193.—Two wires with axes in parallel lines

AD+AD’ AC—-AC '
M =o0.001151 [Ilﬂgm[AD__ADIX'AE%AC‘}

AD+AD’ BD-BD'
+m gy a5 A0 X BD T BD

AD+AD' AC—-AC’' BD-BD’ BC+BC"]]

(178)

+2 IOg“‘[AD —AD' X ACTAC' XBD¥BD' *BC—BC
—~0.001 (AD—-AC—BD +BC)

the distances being AD'=l+m+7Z, AD=+/2+(l+m+2)?, etc,
This formula holds for Z =0, but not when one wire overlaps on
the other.

When they overlap, as in Fig. 194,

‘M=Mt,s4+M:s +M,, (179)

in which M,,, is to be calculated by the general formula, using
Z=o0 and putting the segment PV for [ and ST for m, while for
M,, the length VR is put for ! and WT for m with Z=o0. The
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mutual inductance M,, of the overlapping portions is obtained
by (174).

s
4
R
e
2 3
v S
!
L
P

F10. 194.—Two wires with axes in parallel
lines; a particular case of Fig. 103

Special Cases.—For the case shown in Fig. 195

M =o0.001 [2.3032 log,,(i-g’_-ﬂ) +D- JD"TF] (180)

WS “r

) |
-*———D::- . S 1
T - |
_.%_ 1
Wl 1._

F16. 195.—Two wires withaxesin parallel F1a. 196.—T'wo wires with axes in parallel Lines,
lines; another particular case of Fig. 193 with one end of each on the same perpendicular

and for the wires of Fig. 196

M-ooo: 4605“ .,(2:'1 ;-*.%P -,/D=+4l’

+2+/D? +P——D]

(181)



Radio Instruments and Measuremenis ! 273
. MUTUAL INDUCTANGE OF TWO PARALLEL SYMMETRICALLY PLACED WIRES

A

[
|

LY

F16.197.—Two parallel symmetrically
placed wires

Putting for the lengths of the two wires 2/ and 2/, (2/ the shorter)
and for their distance apart D

2 2
M =0.002 [z.303(2l)10gmr+£‘+ (SH‘) il ”

error - L+_@1+~/—a+m=+ﬂ‘=|
ges p.2 +2'3°3(£‘Hﬂog“‘lz,—z+;7(l1-—z)’+D=

+V&G-D + D~ T+ L) +D=]

(182)

TWO EQUAL PARALLEL RECTANGLES

Let a and a, be the sides of the rectangles and D the distance
between their planes, the centers of the rectangles being in the
same line, perpendicular to these planes

P s R e s
M =o.009210[a logm[a WYy X 1D }
83)
) a, ++/a? +D? 1/a.’+D’}] (x
g 0g1°{a1+1/a’+ax’+D’x D
+0.008 [ya* +a,? + D* — y/a* + D? — y/a,? + D? + D],
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TWO EQUAL PARALLEL SQUARES

If a is the side of each square and D is the distance between
their planes, then the preceding formula becomes

a++/a*+D? % ya*+D?
a++/2a*+D? D

+0.008 [y/2a* + D* — 2+/a* + D? + D]

M =0.01842 [a logm{
' (184)

MUTUAL INDUCTANCE OF TWO RECTANGLES IN THE SAME PLANE WITH THEIR
SIDES PARALLEL

M=(My+Mu+My+My)— (My+My+My+M,)  (185)
2

?

2

Y

Iﬁﬂ 198.—Two rectangles in the same plane
with their sides parallel

the separate mutual inductances being calculated by formula
(182), if the sides are symmetrically placed, and by (182) and
(178) if that is not the case.

If the rectangles have a common center M,,=M,, M,=M,,
M, =M,,, M,;=M,, and for the case of concentric squares, we

have
M=4(M,,—M,,) (186)

TWO PARALLEL COAXIAL CIRCLES

This is an important case because of its applicatility in calcu-
lating the mutual inductances of coils (see below).
Let a=the smaller radius (Fig. 199).
A =the larger radius.
D =the distance between the planes of the circles,
Then
..D3

I'—— i

[(-5)+5
\/ (I+A) +§:
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must be calculated, and,
M=F+/Aa : (187)

where F may be obtained by interpolation in Table 16 for the

calculated value of :—’ (p- 286). 2
%

r,=the longest distance between .
the circumferences.

r,=the shortest distance between
the circumferences.

-

o

-
-

P ——
-

TWO COAXIAL CIRCULAR COILS OF RECTANGULAR
CROSS SECTION

—}.
|

If the coil windings are of square, or
nearly square, cross section, a first ap-
proximation to the mutual inductance is

M=nmn,M, (188)

where n, and n, are the number of turns

on the two coils and M, is the mutual \

inductance of two coaxial circles, one S

located at the center of the cross section

of one of the coils and the other at the Fr6.199.—Cross sections of two

center of the cross section of the other. P i e
i Thus, if

@ [ a=mean radius of one coil, measured from

i e e
"

the axis to the center of cross section,

T A A=mean radius, similarly measured, of the
l other coil,
D =distance between the planes passed

through the centers of cross section of
the coils, perpendicular to their com-
mon axis (Fig. 200).

the value M, will. be computed by formula

(187) and Table 16, using the values of a, A,

and D, just defined.

Fis: Soa- i Jotal If the cross sections of the windings are
lel coaxial coils with square, this value will not be more than a
windings of rectangu-  few parts in a thousand in error, even with
lar cross section 3 ; ¥ .

relatively large cross sectional dimensions,
except when the coils are close together.
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A more accurate value for coils of square cross section may be
obtained by supposing the two parallel circles to remain at the
distance D, but to have radii

b2 b,?
a,=a(x -|~24 a’) and A1=A(1 +"£TA"') . (189)

where b, and b, are the dimensions of the square cross sections
corresponding to the coils of mean radius @ and A, respectively.

When the correction factors in (189) are only a few parts in
1000, the values of 7y/r,, and hence F, are very little affected, and
the fractional correction to the mutual inductance, to allow for
the cross sections, is approximately equal to the geometric mean
of the fractional corrections to a and A4, so that an estimate of the
magnitude of the correction to the mutual inductance may be
gained with little labor.

With rectangular cross sections the error from the assumption
that the coils may be replaced by equivalent filaments at the
center of the cross section is more important than in the case of
coils of square cross section and rapidly increases as the axial
dimension of one or both of the cross sections is increased, in rela-
tion to the distance D between the median planes. The error
may, easily, be as great as 1 per cent or more in practical cases.

An estimate of the magnitude of the error, in any case, may be
made by dividing the coils up into two or more sections of, as
nearly as possible, square cross section, and assuming that each
portion of the coil may be replaced by a circular filament at the
center of its cross section.

Suppose that coil 4 is divided into two equal parts, and replaced
by two filaments 1, 2, while coil B is likewise replaced by two
filaments 3, 4, then, assuming that each filament is associated
with a number of turns which is the same fraction of the whole
number of turns in the coil as the area of the section is to the
whole cross sectional area (one-half in this case) we have

n, ¥ M, NNy
M=22 .2'./1'1,,+%”—2 M +7232 Moy +™02 M,

(M Mt Mo + M

(190)

in which M, is the mutual inductance of the two circular filaments
1 and 3, etc. :
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For a discussion of more accurate methods for correcting for
the cross section of coils, the reader is referred to Bulletin,
Bureau of Standards, 8, pages 33—43; 1912.

If the coils are of the nature of solenoids of few layers, it is
best to use the formulas for the mutual inductance of coaxial
solenoids given in the next section.

Example.—Suppose two coils of square cross section 2 cm on
a side, the radii being, =20, A =25, and the distance between
their median planes being D=10 cm (Fig. 201).
Further, suppose that one coil has 100 turns and .
the other s00. i
Then

ia_

f

as

From Table 16 we ﬁnd, correSpondmg to this

value of < § %)
7, u
F =o.01113. Therefore, from (187)
M,=o0.0 s F16. 201.—Exam-
11134/25 X 20 =0.2489uh prieriipio.
and : lel coaxial coils

M =nmn,M, = 100 X 500 X 0.2489 with windings
=12 445 microhenries o rectangular
cross section
=0.012445 henry.
If we take account of the cross sections we have from (189)

23
a,; =20 (I +m)= 20 (1.00042)

A,=25 (1 +(25) — )=25 (1.00027) '

so that the correction factor to the mutual inductance will be of
the order of about /1.00042 X 1.00027, or the mutual inductance
should be increased by about 3.5 parts in 10 0oo only.
Example.—Fig. 202 shows two coils of rectangular cross section.
For coil P, a=20, b;=2, ¢,=3,n,=600. For coil 0, A =25, b,=4,
€;=1, my=400 and D=10. If, first, we replace each coil by a
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circular filament at the center of its cross section, we have the

' same value of M, as in the previous example, and

M =600 X 400 X 0.2489 microhenries.

More precise formulas, involving a good deal of
computation, show that the true value is

M =600 X 400 X 0.249844,

so that the approximate value is about 3.8 parts in
1000 too small. '

Each coil is then subdivided into two sections

2 T " and filaments $, g, 7, s, imagined to pass through
G‘“;‘; quﬁg the center of cross section of each of these subdivi-
200 sions: The data for these filaments are as follows:

Radius Fllaments | a A D rain ¥

p19.25 pr 19.25 9 0.2365 0. 01140

q 20.75 e 19,25 25 11 L2722 . 009872

r2s qr 20.75 25 9 . 2135 . 01255

525 . qs 20.75 25 11 . 2506 . 01077
We find then

M-600><4oo[0'25m +0.2166+40.2858+0.2452

4

a result which is 1.7 in 1000 too small.
The increase in accuracy is hardly commensurate with the
increased labor.

}—600><400><o.24942

MUTUAL INDUCTANCE OF COAXIAL SOLENOIDS NOT CONCENTRIC
Gray’s formula, given for this case, supposes that each coil
approximates the condition of a continuous thin winding, that is,
a current sheet.

-

A

¥

2x

s
—

L —

—
—
——

=
T
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n
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T
=&;

———

L

F16, 203.—Coaxial sol.

ids not co iri

_—
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Let a =the smaller radius, measured from the axis of the coil

to the center of the wire

A =the larger radius, measured in the same way

2l =length of the coil of smaller radius =number of turns
times the pitch of winding

2x =length of the coil of larger radius, measured in the same
way

n, and n, =total number of turns on the two coils
D =axial distance between centers of the coils

n=D—x 7, =x3+ A2
%=D+x 1= y5 +A?
M =0.009870 a;‘:’?‘;’ [K,k‘ + Kk, +K.k.:| (x91)
in which

Kl "'": 3 xl) k =2]

K'“I xl rx‘l ky=a?l (3 4

2\ 7"

Ay x x 1
om ATA-0)- -]
ky=a'l (é— 10— 4;

This formula is most accurate for short coils with relatively
great distance between them, In the case of long coils it is some-
times necessary to subdivide the coil into two or more parts.
The mutual inductance of each of these parts on the other coil
having been found, the total mutual inductance is obtained by

adding these values.
Exam Pk.—"_
~——2033—
" 2738 e
64 22 dass

e s e i o
ad

F16. 204.—Ezxample of coaxial solenoids not concentric

2% =20.55 A=6.44 n,=15

2l =27.38 @ =4.435 n: =75
Distance between the adjacent ends of the two solenoids = 7.2 cm,
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Then
%, =20.89 ¢\ kK, =0.04294
Xy =41.44 k.K,= .01827
kK= .00519
0.06640
2 A3
and M 10.009870(62‘;1 n;’;’ 0.06640 = 1.069 microhenries
log 0.009870 =3.99432
2loga =1.29378 log 22 =1.31281
2 log A =1.61778 log 21 =1.43743
log n,n, =3.05115 Ty
log 0.06640 =3.82217 215034,
2.77920
2.75024
0.02896 =log M

Dividing the longer coil into two sections C and D of 37 and 38
turns, respectively, and repeating the calculation for the mutual
inductance of these sections on the other coil R (Fig. 204),

FOI’ Mnc FOI‘ Mnn
kK, =0.04889 kK,=0.01155
kK,= .00652 kK,= .00061

kK= .00005
0.01216

0.05546

and M =Mgzo+Mzp=0.8917 +0.1956 = 1.087 uh.
! Further subdivision showed that this last value is not iz error
by more than 5 parts in 10 oco.

The criterion as to the necessity of subdivision is the rapidity
with which the terms k.K,, kK,, etc., fall off in value. In the
first case kK, and kK, are not negligible. The expressions for
these quantities are not here given because they are laborious to
calculaie, and it is easier to obtain the value of the mutual induc-
tance by the subdivision method.

COAXIAL, CONCENTRIC SOLENOIDS (OUTER COIL THE LONGER)

The formula here given holds, strictly, only for current sheets.
The lengths of the coils should be taken as equal to the number
of turns times the pitch of the winding in each case. Then the
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mutual inductance of the current sheets is not appreciably differ-
ent from that of the coils.

Let a=smaller radius = = 7
A =larger radius * ' -—e,[——+-/":
2x=equivalent Al i i .

length of outer coil 1 E i ,»” i H
2l=equivalent ! i ! !
length of inner coil i i i i
il
g=+* + A* = diag- \ i
onal. \ ;
F16. 205.—Coaxial concentric solenoids, outer coil
Then being longer

M_o.mg?; a*n,n, [1 +%;T’(3"4T:':)] (192)

This formula is more accurate, the shorter the coils and the greater
the difference of their radii, but in most practical cases the accu-
racy is ample. In many cases the second term in (192) is negli-
gible, and it is a good plan to make a preliminary rough calcula-
tion of this term to see whether it ‘will need to be considered. In
the case of long coils, and of coils of nearly equal radii, the terms
neglected in this formula may be as great as 1 per cent. A crite-

243
rion of rapid convergence is, in general, the smallness of :%f_’ but
the magnitude of the coefficient (3 -—4{-,) and the corresponding

coefficients of terms neglected in (192) may in some cases modify
this condition for rapid convergence materially.

Example.—
a*A? 4
2% =30 2l 5 g=+/250 g‘ -:6_2—5_
A=3 a=4
7, =300 7;=200
3,
0.01974 £ ';‘ﬁ’- 1198.5

M =1108.5 (1 +.00115) =1199.9 microhenries.

For the case, however, where
2x =30 a=2 7, =300
2l=24 A=35 7, =960

486861 O-38-19
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a*A? 1 ; Il
although the value of = e only, the coefficient (3—4 r?)

=141, (the length of the coil is great compared with its radius) so

343
that the term in Z H is —o0.0282, and investigation of the com-

plete formula shows that the succeeding terms are —o.0127 and
—0.0048, so that their neglect will give an error of over 1.5 per
cent. (For precision calculations see Bull., Bureau of Standards,
8, pp. 61-64, 1912, for the complete formula.)(Sci. Paper No. 169.)

CONCENTRIC COAXIAL SOLENOIDS (OUTER COIL THE SHORTER)

- Do —p=

L
4 iz
i e l

il S pep—

F16. 206.—Coaxial concentric solenoids, outer coil being shorier

In this case we have to put g=+/F+A4?% and the formula is

i anmn,| 1+ A%? 2
Meoorgrs = [ 8g° 3—-40,)] (193)

which is rapidly convergent in most cases.

70. TABLES FOR INDUCTANCE CALCULATIONS

TABLE 8.—Values of 4 in Formulas (132), (134), (137), (138), (140), (141), (142), and
(147), for Calculating Inductance of Straight Wires at Any Frequency

z L} z ]
0 0.250 12.0 0.059
0.5 . 250 14.0 . 050
L0 249 16.0 044
1.5 M7 18.0 .03
20 « 240 2.0 .035
2.5 0.228 25.0 0.028
a0 -211 .0 .024
3.5 191 40.0 0173
4.0 1715 50.0 .014
4.5 154 60.0 012
5.0 0.139 70.0 0.010
6.0 -116 80.0 . 009
7.0 100 90.0 . 008
8.0 .88 100.0 007
9.0 .078 -} 000
10.0 070
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TABLE 9.—Constants P and Q in Formulas (141), (142), (144), and (145)

2% 1 ah 1 Q
¥ » Y e T r =

(] 0 0 1. 0000 0.6 0.5136 0.6 1.2918
o1 0.097% 0.1 1. 0499 oF « 5840 7 1.3373
+3 . 1900 2 1.0997 .3 . 6507 .8 1.3819
.3 L2778 - ] 1. 1489 .9 . 7139 .9 1.4251
o4 . 3608 .4 . 1975 Lo « 7740 1.0 4672
5 4393 o3 « 2452

TABLE 10.—Values of K for Use in Formula (153)

Diameter Diameter Diameter
Tt | K Difference “Tengih K Difference “Tenglh K Difference
0.00 1..0000 =0.0209 2.00 0.5255 —0,0118 7.00 0,2584 —0. 0047
. 9791 203 2.10 . 5137 112 T.20 . 2537 45
10 9588 197 2.20 . 107 7.40 . 2491 43
18 .9391 190 2.30 L4918 102 7.60 L2448 42
.20 .9201 185 2.40 L4816 97 7.80 . 2406 40
0.25 0.9016 —0.0178 2.50 0.4719 —0.0093 8.00 —0. 0094
.30 . 8838 2.60 . ] 8.50 L2272 86
- . B66S 167 2.7 . 85 9.00 . 2185 79
.40 . B499 162 2.80 L4452 82 9.50 . 2106 73
45 . 8337 156 2.90 L4370 78 10. 00 . AR R
0.50 0.8181 —0.0150 3.00 0. 4292 —0.0075 10.0 0.2033 —0.0133
-] . 8031 146 3.10 L4217 72 11.0 .1903 113
d . 7885 140 320 L4145 70 12.0 L1790 98
.65 L TT45 136 3.3 . 4075 67 13.0 . 1692 87
.70 . 7609 131 3.40 4008 64 14.0 . 1605 78
0.75 0.7478 -0.0127 3.5 0.3944 —0. 0062 15.0 0.1527 —0.0070
.80 . 7351 3.60 . 3882 60 16,0 . 1457 63
.BS . 7228 118 3.70 . 3822 58 17.0 L1394 58
. L7110 115 3.8 . 56 18.0 L1336 52
.95 . 6995 m 3.90 . 3708 54 19.0 L1284 48
1.00 0. 6884 —0.0107 4.00 0.3654 —0. 0052 20.0 0. 1236 —0. 0085
1.05 L6777 104 4.10 . 3602 51 22.0 1151 ”
1,10 .6673 100 4,20 . 3551 49 24.0 .1078 63
115 .6573 98 4.30 . 47 26.0 . 1015 56
1.20 . 6475 94 4.40 » 3455 46 28.0 L0959 49
1.25 0.6381 —0.0091 4.50 0. 3409 —0. 0045 0.0 0.0910 -0, 0102
1.30 . 6290 89 4. 60 . 3364 43 35.0 . 0808 80
135 . 6201 86 4,70 .3321 42 40.0 L0728 64
1.40 L6115 84 4.80 .3279 41 45.0 . 53
1.45 . 6031 81 4.90 .3238 40 50.0 L0611 43
1.50 0. 5950 —0.0079 5.00 0.3198 —0.0076 60.0 0.0528 -0, 0061
1.5% . 5871 76 5.20 3122 72 70.0 467 48
1.60 . 5795 T4 5.40 B ] 80.0 L0419 38
1.65 L5721 72 5.60 . 2981 65 90.0 . 0381 a
1.70 . 5649 7 5.80 «2916 62 100.0 H .
1.75 0. 5579 —0.0068 6.00 0.2854 =0, 0059
1.80 . 5511 67 6.20 2795 56
1.85 .« 5444 65 6.40 L2739 54
1.90 . 5379 63 6. 60 . 2685 52
L9s . 5316 61 6.80 2633 49
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TABLE 11.—Values of Correction Term A in Formulas (155), (165), (168), and (169)

d
-E A Difference D A Difference -l% A Difference
1.00 0.557 —0.051 0.40 —0.359 —0.052 0.15 -~1.340 —0. 069
0.95 3 .38 .411 54 14 1.409 74
.90 .452 57 .36 465 57 .13 1.483 B0
.85 61 34 .522 61 .12 1.563 a7
.80 334 65 .32 .583 64 W11 1.650 96
0.75 0.269 —0.069 0.30 —0. 647 —0.069 0.10 —1.746 -0, 105
.70 .200 74 .28 . 716 74 ¥ 1.851 .118
.65 .126 .26 . 790 80 08 1.969 .133
.60 046 87 .24 .B70 87 .07 2.102 154
.55 — .041 95 .22 .957 2.25 173
0.50 —0.136 —0.041 0.20 —1.053 —0.051 0.05 —2.439 —0.223
.48 77 43 19 1.104 54 .04 2.662 .788
.46 . 44 .18 1.158 Ld .03 2.950 . 405
4 . 264 47 A7 1.215 61 .02 3.355 693
42 .311 48 .16 1.276 64 .01 4.043 aressnns

TABLE 12.—Values of Correction B in Formulas (155), (165), (168), and (169)

Number of B Number of B
turns, 5 turns, n
1 0. 000 40 0.315
2 114 45 .317
3 .166 50 .319
4 .197 60 .32
5 .218 0 324
6 0.233 80 0.326
7 L 244 % .327
B .253 100 328
9 . 260 150 331
10 .266 200 .333
15 0.286 300 0.334
20 . 297 400 . 335
25 . 304 500 .336
30 .308 700 .336
as .312 1000 . 336

TABLE 13.—Values of B, for Use in Formula (156)

b b
= B, - B,
1 0. 0000 16 0.3017
2z .1202 17 3041
3 1753 18 3062
4 2076 19 3082
s 2 20 3099
6 0.2446 21 0.3116
7 2563 22 313
B 2656 23 3145
9 2730 24 3157
10 2792 25 3169
11 0. 2844 26 0.3180
12 .2888 27 3190
13 2927 28 3200
14 . 2961 29 3209
15 2991 30 3218
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TABLE 14.—Constants Used in Formulas (157) and (158)
Bje ot efb n Difference cfb va Difference|  bjc ¥ D.‘::"
0.5000 0.0253 0 0.125 0.002 0 0.597 0.002
0.025 .5253 Fr | el I e [ = D R
.05 -5450 434 ; 127 5 0.05 : 3
110 5924 386 .10 32 10 .10 5 6
0.15 0.6310 0.0342 0.15 0.142 0.013 0.15 0.608 0.007
.20 .6652 301 .20 .155 16 .20 -615 9
.28 .@953 266 .28 an 20 .25 ‘624 9
.30 L7217 230 .30 1192 23 .30 -633 10
0.35 0. 7447 0.0198 0.35 0.218 0.027 0.35 0.643 0.011
-40 - 7645 17 .40 242 31 .40 -654 11
45 -7816 144 145 ‘273 34 .45 1665 12
.50 - 7960 121 .50 -307 37 .50 677 13
855 0.8081 0.0101 0.55 0. 344 0.040 0.55 0.690 0.012
.60 .8182 83 .60 1384 43 .60 -702 13
.65 8265 66 .65 427 47 .65 ms 14
.70 .833L 52 70 474 4 70 129 13
0.75 0.8383 0.0039 0.75 0.523 0.053 0.75 0.742 0.014
.80 8422 29 .80 .576 56 .80 7 15
.85 .8451 19 .85 632 59 .85 T 15
-9 8470 10 .50 .6%0 62 90 -786 15
0.95 0.8480 0.0003 0.95 0.752 0.064 0.95 0.801 0.015
1.00 ) e 1.00 s o] || Sy e
1
TABLE 15.—Values of Constants in Formula (162)
Values of 5is Values of du
r »
=0 0.1 0.3 0.5 0.7 0.9 =0 | 03 | 06 | 09
0 0.114 | 0.113 | 0.106 | 0.092 |0.068 |0.030 0 |o0.022 |0.020 |0.014 |0.004
o5 | .050 | .o | .os8 | .o70 | .o49 | .020 0.5 | .021 | .om | .o14 | .o04
1.0 | .o6¢4 | .o064 | .os9 | .0s0 | .03 | .o13 1o | .o19 | .o18 | .013 | .o04
L5 | .o47 | .o46 | .o43 | .036 | .025 | .009 20 | .o15 | .015 | .o10 | .003
20 | .os5 | .05 | .os2 | .o27 | .o18 | .007 40 | .008 | .008 | .005 | .002
30 | .o22 | .02z | .oz0 | .017 | .o11 | .004 60 | .005 | .005 | .004 | .00t
40| .o5 | .o15 | .om4 | .012 | .008 | .003 || 100 | .003 | .003 | .00z | .005
60 | .oo2 | .o08 | .oo8 | .006 | .004 | .002
80 | .o0s | .006 | .oos | .o04 | .003 | .00
100 | .o04 | .004 | .o04 | .003 | .002 | .001
Values of 314 Values of 515
v n »
=0 0.3 i 0.6 ' 0.9 =0 0.1 0.5 ] 0.9
0 0.009 0.009 | 0.006 | o0.002 0 p.00s | 0.00s | 0.004 | o001
1 . 009 . 008 . 006 . 002 5 . 003 .003 . 002 .001
3 . 007 . 006 . 004 .001 10 . 002 . 002 . 001 . 000
5 . 004 . 004 . 003 . 001
10 .00z .002 . 001 . 000
Values of 514 Values of &7 Values of 5is
i % 0 i 0
o ) T T
';d 01| 08 0.9 and 0.1 93 0.9 and 0.1] %9 0.9
o | 0003 | 0003 | 0.00 o |00z |o0ooz |o.001 o |o0o00z [coo |o0.000
5 002 | .00z | .000 s | .00z | .001 | .000 s | .oo1 | .oo1 | .000
10 001 | .001 | .000 10 | .oot | .o01 | .000 10 | .oo1 | .00t | .000

NoTi,—The maximum values of all further values of the 's are o.cor or less,



286 Circular of the Bureau of Standards

TABLE 16.—Values of F in Fonnuh (187) for the Calculation of the Mutual Inductance
of Coaxial Circles

T/ ¥ Difference 1/ F Difference /11 F Difference
0.010 | 0.05016 | —0.00120 0.30 | 0.008844 | —0.000341 0.80 ‘o. —0.
011 4897 109 .31 8503 3 .81 6741 579
012 4787 100 .32 8175 a4 .82 6162 555
33 7861 302 .83 5607 531
0. gi 3 :g —-0. ooogg M 7559 2% .84 5076 507
o | | & o |owns oo | o pones oomou
018 4278 132 :33 sr0 260 & 437
- 3188 413
0. gg 0.04146 | —0.00119 .39 6211 41 8 2775 389
-024 3918 100 || 0.40 |0.005970 | —0.000232 0.90 10.0002386 |—0. 0000365
026 3818 93 41 5738 2 91 2021 s 341
028 arzs 86 42 5514 217 92 1680 316
43 5297 210 93 1364
0. gg % —0. uoogg 5087 0z 94 1074 263
L34 [ %45 | 000 | —0.000193 0.95 10.00008107 |—0.00002351
036 3411 68 4500 18 5756
.038 3343 64 47 4501 183 o7 3710 1706
48 4318 178 o8 2004 1301
0.040 | 0.03279 | —0.00061 49 41490 m % 703 703
042 gfég gg 0.50 noog:go 0. 000166 1.00 0
046 3105 53 X ié m; i 56 0.950 10. 00008107 | —0. 00000494
048 3052 51 53 3487 150 .952 7613 482
0.050 | 0.03001 | —o. o o el 9% seat i
% zsmsi {2 0.55 o.mggé —0. 000};} .958 5202 446
2420 144 57 2913 133 0.960 0. 00005756
090 2276 128 58 2780 128 962 5320 421
100 | 0.02148 00116 ¥ s 1P 56 4450
B 2248 | —0.000 I o.60 |0.002527 | —0.000120 e et 4
12 1928 96 .61 2407 117
13 1832 89 .62 2290 13 0.970 10.00003710 |—0. 00000370
| m) el oml o ®|ECEC B
. . 1
o15 0.01661 | —0.00075 .976 2643 327
16 1586 7 || 065 |0.001962 | —0.000103 978 2316 312
7 1515 66 -8 i o
18 1449 62 ‘& b 1 0.980 (0. 00002004 |—0. 00000296
19 1387 » .6 1571 90 o L 4
o% |oosm | —ooms | am loonm |-cowom | 38| 18 =
22 1221 50 :;‘z 1310 81
23 1un 47 ‘73 1228 78 0.990 [0.00000703 |—0. 00000201
24 1124 45 R 1150 7% .992 502 %ﬂ'
o g: 0. O}gggg —0.000425 || 0. ;: 0. m}gg —0, 0000731 992 g 115
; f 99
27 0.009958 388 i 9306 630
9570 3n .78 8626 653
2 9199 .7 7973 628

DESIGN OF INDUCTANCE COILS
71. DESIGN OF SINGLE-LAYER COILS

The problems of design of single-layer coils may be broadly
classified as of two kinds.

(1) Where it is required to design a coil which shall have a
certain desired inductance with a given length of wire, the choice
of dimensions of the winding and kind of wire to be used being
unrestricted within rather broad limits. This class of problems
of design includes a consideration of the question as to what
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shape of coil will give the required inductance with the minimum
resistance.

(2) Given a certain winding form or frame, what pitch of
winding and number of turns will be necessary, if a certain
inductance is to be obtained.

In the following treatment of the problem the inductance of
the coil will be assumed as equal to that of the equivalent cylin-
drical current sheet. This is allowable, since, in general, the
correction for the cross section of the wire will not amount to
more than 1 per cent of the total inductance, an amount which
may be safely neglected in making the design. The formulas to
be given may, of course, be used for making a calculation of the
inductance of a given coil. Nevertheless, since their practical
use is made to depend upon the interpolation of numerical values
from a graph, for accurate calculations formulas (153) and (155)
should be used.

The inductances of coils of different size, but of identical shape,
and the same number of turns, are proportional to the ratio of
their linear dimensions. Every formula for the inductance
should, accordingly, be capable of expression in terms of some
single chosen linear dimension, all the other dimensions occurring
in the formula in pairs in the form of ratios.

Two formulas are here developed, the first applicable to the
solution of problems of the first class, giving the inductance in
terms of the total length of wire /, the second for problems
presupposing a winding frame of given dimensions. Both show
the dependence of the inductance on the shape of the coil.

Coil of Minimum Resistance—The fundamental relations of the
constants of a coil are

l=2man b=nD
2
L= 41r’-n’%K cgs units

the constant K being a function of the shape factor 2_a’ diameter

+length (Table 10, p. 283).
The expression for the inductance may be written as

2waln

5 K

and n» may be eliminated by substituting for it the expression

e OB
' 2mral) D’

L.=
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obtained by multiplying together the two expressions involving
n above. There results, then,

/ 2a 1 5
L.— T -FB-K cgs units

1T
||||||
T

HH

Ss=mas

F16. 207.—(1) Variation of F with different ratios of coil diameter to length; (2) variations
of » with ratios of diameter lo length

To aid 1 the use of this formula the curve of Fig. 207 has been

prepared, which enables the value of F = % T%G to be obtained

for any desired value of 2; + The formula (194) and the curve

enable one to obtain with very little labor the approximate value
of the inductance which may be obtained in a coil of given shape
with given / and D. On the same figure is also plotted the factor

y= f—b— as a function of 22 (see example below).
T2a b
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Coil Wound on Given Form.—To obtain the second formula, we
substitute for » its value { » and

D
L"'“"D’b ,.-’(D) K cgs units
or
2a)
ﬂzooo = K ] microhenries (195)
and, ﬁnau}rs
2a)*
f[. .1; = f (196)
iz I
i -
i
#
T £ i
v 4 m
Emmn
i : : HiiE et
! s H :'1

F16. 208.—Variation of f and log,of with 5

To aid in making calculations the curves of Fig. 208 have been

prepared, which give the values of f and log,, f=log,, 113?{0 2:

for different values of —- The value of log,, f is plotted, rather

than that of f, for large values of 22 b %, to enable values to be inter-
polated with greater accuracy.
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From formula (194) and Fig. 207 it is at once evident that
with a given length of wire, wound with a given pitch, that coil
has the greatest inductance, which has such a shape that the

. diameter . - £
ratio W=2.46 approximately. Or, to obtain a coil of a

certain desired inductance, with a minimum resistance, this
relation should be realized. However, although the inductance
diminishes rather rapidly for longer coils than this, changes in
the direction of making the coil shorter relative to the diameter
are not important over rather wide limits. Naturally, other
considerations may modify the design appreciably. These other
considerations include the distributed capacity of the coil and
the variation of resistance with frequency.

Example—Given the pitch of winding, the shape of the coil (%;3).

and the inductance, to determine the length of wire necessary, the
dimensions of the coil and the number of turns.

Assuming D =o0.2 cm = 2.6, L, =1000 microhenries,

* 'F

By formula (194), 4 =Y "= 1000v0.2, (ihe value of F =o. 001322 being
0.001322

log 1000=3. taken from the curve of Fig. 207) or

Zlog 0.2 =1.65052 [I=4850 cm. The number of turns may
be obtained immediately from the relation

2.65052 = >
log F =3.12123 T
; n JD ===l 5 and the graph of ».
fylog I =5.52929
¥ log ! =1.84310

log ! =3.68619

Here n= I{i_é.(_’ (0.350) = 54.5 turns, and b=nD =10.9 cm, while
2a=2.6 X109=28.3 cm.

If the pitch of the winding had been assumed greater, or a coil of
much larger inductance were required, the design of the coil would
call for larger dimensions, and cases may arise where the design
may prove unsatisfactory, because the coil would be too large.
The effect of changing the length and pitch, the shape being taken

ik
constant, may be seen from (194), which shows that L,x VE, so

that a given fractional increase in the length of the wire is more
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effective in increasing the inductance than the same fractional

decrease in the pitch. The number of turns depends on ‘\[I_T) the

shape of the coil being kept the same.

Example—Formula (194) will also enable the question to be
answered as to what pitch must be used if a given length of wire
is to be wound with a certain shape of coil to give a desired
inductance. If the pitch comes out smaller than the diameter of
the proposed wire, the assumed length of wire must be increased.

Suppose that an inductance of 10 ooo microhenries is desired

with 50 meters of wire, the value of '%a being taken as 2.6, as before.
Then

¥ to.
JE—;:F = (500?0 (;::31322. or D =0.00218 cm,

which is manifestly impracticably small.

The maximum inductance attainable with the given length of
wire could be found by solving (194) for L with the smallest
practicable pitch substituted for D, that value being used for F,
which corresponds to the assumed ratio of diameter to length.

Example—Suppose we have a winding form of given diameter
2a =10 cm, how many turns of wire will have to be used for an
inductance of 1oooph if the winding pitch is taken as 0.2, and
what will be the axial length of the winding?

From (196)

1000

f—m—25 or loglo)‘- 1398

From Fig. 208 this corresponds to a value of %=0.225, orb

must be 45 cm, and the numberoftumsu=%== 45 =225. Sucha

coil would be too long to be convenient. A smaller pitch should
be used.

Ezample.—Suppose we have given the same winding form, and
we wish to find what pitch is necessary for an inductance of
1000k, in order that the length of the coil shall not be greates
than the diameter.

For

2a :
b =148 (Fig. 208)
and by (196)
(2:1)s 1000

Lf ~Tooox148 ¥ oot

DS
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This is a pretty close winding, showing that the winding form has

rather too small a diameter for a coil of this inductance.
Example.—To find the diameter of a winding form to give an

inductance of 1oooph, with a shape ratio %a =2.6, the pitch being

chosen as 0.2 cm.
From (196) we have (2a)®=L,D?.

The value of f for 353-2.6 is (from Fig. 208) given by log,, f =

2.75 or f=565 approximately. Therefore (2a)®=1000X0.04X
565, or 2a =28.2 cm, which will give b=10.85, 7 =54.2.

If, instead, the shape is assumed to be given by 2—;‘ =1, then
log f=2.17 or f=148.
(2a)* =1000 X 0.04 X 148, or 2a=18.1 cm =), and n=go.5.
The values of f taken from Fig. 208 are not so precise as could

be calculated from the equation (195), but the accuracy should
suffice for this kind of work.

72. DESIGN OF MULTIPLE-LAYER COILS

For purposes of design we may neglect the correction for cross
section of the wire, formula (159), and operate on formulas (157)
and (158) alone.

T'wo forms of equation have been found useful, the first involving
the length of wire in the coil and the second the mean radius of

the coil.
Suppose that the length of the winding /, the distance between

the centers of adjacent wires D, shape of cross section EE-’, and the

shape ratio of the coil %» are given. We obtain an expression for
n by multiplying together the fundamental equations,

be _bfc\ o a
== \D) " " Gxap

which involves ratios of known quantities only.

-GOOE o
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In equation (158) the factor 4wan®=2In, and if the value of n
just found, be introduced, we have finally for ¢>b

B e e D)
+z=it (‘+3 )[mg' h_hlog‘(r+_):ﬂ]

and for b>c

b b 3
pur D'( )( )[log,B log.—-log, . log.(x+;, -9

,2;, a4 55) Low Z-tosg 108 (+5:) ] G

T T
H
11

11
-

191
.
IT
TIT
-

ym
T

Fic. 209.—Values of (G) for given values of ¢ and b
. T

Both of these equations may be written in the form
:
L= %, G microhenries (200)

in which G is a factor whose value for given values of 5 and %may

be taken from the curves of Fig. 209.
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When [ is known A
e e
*=Var b Gop i

From these curves one can see that, for a square cross section,
b/c =1, the inductance of a given length of wire is a maximum for

a value of g equal to about §~ Investigation shows that this

point is, more exactly, ¢/a =0.662; that is, for a mean diameter of
coil = 3.02 times the side of the cross section. Further, for a given
resistance and shape of coil, the square cross section gives a greater
inductance than any other form.

t
e
1
4
1
el
.- .

4
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amm
H
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T
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Fro. 2x0.~Values of (g) for given values of % and %
The second design formula supposes that the dimensions a, c,
and g-of the winding form are given, together with the pitch of the

winding. The expressions (157) and (158) for the inductance may
then be written

3 4
L=o0.01257a % ( l%) g microhenries (202)

=0.01257 an’g (203)
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The curves of Fig. 210, which give ¢ for different values of
ﬁ-and% allow of interpolation of the proper value in any given

case.
Example—Suppose we have a wire of such a size that it may be
wound 20 turns to the centimeter, and we wish to design a coil to
have an inductance of ro millihenries, to have a square cross
section and such a mean radius as to obtain the desired inductance
with the smallest resistance (smallest length of the wire).

The latter condition requires that 5*0.662. The given quan-

tities are D =0.05 cm, b/c=1. From Fig. 209 we find that G =
I

0.000606, so that (200) becomes 10 000 = o) 0.000606, ﬁ'om

which [ =6458 cm or 64.58 meters of wire.

2/3 log D =1.13265 From the fundamental equation -(:_ .

7 B

) Gt
0f ~oor =7-21753

5/3 log I =6.35018 ) i T o T

1/3 log I =1.27004 o= P (cla)?

2 log 1 =17.62022
log I =3.81011 =1.80
2

and thence b =¢=0.662 X 1.80=1.19, and ”=%:“:“‘((3%I§2)_5“’ 570-

This coil is rather too small to allow of its dimensions being

accurately measured.
If wire of double the pitch is used, the design works out with

the following results

1 =85.22 meters c=b=2.08
n=432 a=3.18

which is more suitable.

Examgple—We have a form whose dimensions are 2a =10, ¢=3,
b = 2.4, wound with wire of such a size that there are 10 turns per
cm; that is, D =o0.1. What is the inductance obtained and what

length of wire is used?

be _3X2.4

=TT ot D
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From Fig. 210 the interpolated value of g for 2—0.8, cla=0.6 is
1.54 (calculated directly from (158) =1.552). Accordingly,
L=0.01257X5 ><72_0’>< 1.54 =750 160 uh.
= 50.16 millihenries.

The length of wire is l =2m an =10 T 720.=22 600 cm
=226 meters,

Ezxample—The same formula might be used to answer the ques-
tion, How many turns would have to be wound (completely filling
this cross section) in order to obtain a desired inductance, say 20
millihenries. From (203),

v L 4 20 000
0.01257 ag (0.01257) 5 (1.54)

or n would be 454, which would mean that

=206 500

D’nvéc— =:‘r-'£=0.0158
454 454
or D =0.126, so that the wire would have to wind about 8 turns
to the centimeter.

The skin effect and capacity between the layers of the wire are
larger in this kind of coil than in the other forms previously con-
sidered. A multiple layer coil is therefore to be regarded as unde-
sirable in radio work, and if it be used the cross section should be
made small relative to the mean radius.

73. DESIGN OF FLAT SPIRALS

The design of a flat spiral differs from that of a multiple layer
coil in that the actual width b of the tape used (not b/c) is sup-
posed to be a given quantity.

The fundamental equations are

c !

n==and n=——
D 2%G

which, on mutiplication, give

I

n ==
27w

%
a D (204)
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and this introduced into the expression 4ran®=2in gives finally

_-TﬁH microhenries. (205)

It
1l um
¥

F16. a11.— Value of (H) for given values ofcicmd%

The factor H, which may be determined from the curves of Fig.
211 is a function of ¢/a and b/c. The latter quantify may be
expressed in terms of the known quantities by the equation

b
= by /f—g—-‘/g (206)

Accordingly, the curves are plotted with H as ordinates, c/a as

abscissas, and b 4/ = as parameter.

lD

An important deduction which may be made from the curves is
that for the maximum inductance with a given length of tape the
ratio ¢/a should be about 34, which means that the opening of the
spiral should have a radius nearly as great as the dimension across

486861 O-38—20
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the turnis of the spiral. This point in design is in agreement with
the practical observation that turns in the center of the spiral
add a disproportionate amount to the high-frequency resistance of
the spiral.

Example—Find the length of tape 0.6 cm wide, wound with a
pitch of 0.6 cm, to give an inductance of 200 wh, assuming such
proportions that c/a=1. Work out the design.

Since ! is not known, the parameter b "’ID is not known.

Assume a value of o.1 for the latter. Then for the value c/a=1
the curve (Fig. 211) gives H =0.00123.

Thence li—zogo'ms or [=3287 cm, With this value of /, the

arroy parameter is 0.6 19720roo339,to which the value H =o0.00128
’e p.2

corresponds (with E-I). Repeating the calculation of / with this

value of H, we find /=3370 cm as a second approximation. The
next approximation gives a parameter of 0.0335 and the values of
H and [ are sensibly unchanged

0.6
Using this parameter in (206), --o .0335 or 6-0-0335-17'9 and
the value of a =17.9 likewise. The number of turns will be n = 769

=about 30.
Example—We have 17.50 meters of tape 1 cm wide, which we
wind with a pitch of 0.5 cm, to such a shape that ¢/a =0.8.

Here D =o0.5,l=1750cm,b=1, Thepirameterls‘/875-00847,
to which, for ¢/a =0.8, H =0.001248 corresponds.

(1750)*
Wooouq.s 129.2 ph
b_0.0847

e i by equation (206)

0.

and the number of turns, n—i-g's-‘s’é-n nearly.
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Example —The problem may arise as to how closely the tape
in the preceding case would have to be wound, still keeping E =0.8,

to obtain an inductance of 200 ph.

Changing the pitch D will change the parameter of the curves,
and hence H. The changes in the latter will not be important,
for small changes in D, so that to a first approximation the induc-
tance will change inversely as +/D.

Therefore

D 1202

0.5 200

» or D =0.2086 cm.
Calculating the parameter with this value we find o.1312,
and thence H =0.001216, so that the second approximation is
)
-Jl_?—-(igggl—(o.oomm), and D =o0.1981, and another approxima-

tion is 0.197, the parameter being 0.1346. The dimensions are
found from

b .0.1346

= s =0.1505 8‘0'1505"’6.64
L =S54
a=-3 8.30 ~oig 4 nearly.

HIGH-FREQUENCY RESISTANCE
74. RESISTANCE OF SIMPLE CONDUCTORS

Two principal causes act to increase the resistance of a cir-
cuit carrying a current of high frequency, above the value of
its resistance with direct current, viz, the so-called skin effect
and the capacity between the conductors. This section deals ex-
clusively with the skin effect or change of resistance caused by
change of current distribution within the conductor. (See sec. 3.)

Unfortunately, formulas for the skin effect are available only
for the most simple circuits; and for other very common cases in
pmctloe only qualitative indications of the magnitude of the
increase in resistance can be given.

In what follows

R =the resistance at frequency f

R,=the resistance with direct current or very low frequency
alternating current.
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The quantity of greatest practical interest is not R, but the
resistance ratio R—{E Given this ratio for the desired frequency and
the easily measured direct-current resistance, the high-frequency
resistance follows at once.

The skin effect in a conductor always depends, in addition to

r
lfl%'.‘athe thickness of the conductor, on the parameter 1/2—:& in which

p=permeability of the material, j=frequency of the current,
p=the volume resistivity in microhm-cms, so that as far as skin
effect is concerned, a thick wire at low frequencies may show as
great a skin effect as a thin one at much higher frequency.

The skin effect is greater in good conductors than in wires of
high resistivity, and conductors of magnetic material show an
exaggerated increase of resistance with frequency.

Cylindrical Straight Wires—For this case accurate values of
the resistance ratio are given by the formula and tables here
given.

If d is the diameter of the cross section of the wire in cm, the

quantity LCH
e L gy
x—-:rd'J 5 i (207)

must be calculated (or, in the case of copper, obtained for the
desired frequency from Table 19, p. 311 and formula (209)). Know-

ing the value of x, the value of 4 may be taken at once from Table
B

17, page 309, which gives the value of §R~ directly for a wide range
0

of values of x.

Table 19 gives values of
grToT
ee p.2 Go=0.01071./F (208)

for a copper wire at 20° C, o.1 cm in diameter, and at various
frequencies. The value of x for a copper wire of diameter d in
cm is

X, =10da, (209)
For a material of resistivity p and permeability u, the parameter
% may also be simply obtained from the value which holds for a
copper wire of the same diameter, by multiplying the latter value

P,
by‘/ =
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The range of Table 19 may be considerably extended by remem-

bering that a is proportional to +/f or J;- where \ is the wave
length.

Table 18, page 310, will be found useful, when it is desired to
determine what is the largest diameter of wire of a given mate-
rial, which has a resistance ratio of not more than 1 per cent
greater than unity. These values are, of course, based on certain
assumed values of resistivity; temperature changes and differ-
ences of chemical composition will slightly alter the values. In
the case of iron wires u is the effective permeability over the
cycle. This will, in general, be impossible to estimate closely.
The values given show plainly how important is the skin effect
in iron wires.

For a resistance ratio only one-tenth per cent greater than
unity the values in Table 18 should be multiplied by o0.55, and
for a 10 per cent increase of the high-frequency resistance the
diameters given in the table must be multiplied by 1.78.

The formulas above given apply only to wires which are too far
away from others to be affected by the latter. For wires near
together, as, for example, in the case of parallel wires forming a
return circuit, the mutual effect of one wire on the other always

increases the ratio g No formula for calculating this effect is

available, but it is only for wires nearly in contact that it is impor-
tant. At distances of 10 to 20 cm the mutual effect is entirely
negligible.

Tubular Conductors—The resistance ratio of tubular conduc-
tors in which the thickness of the walls of the tube is small in com-
parison with the mean diameter of the tube, may be calculated
by the theoretical formula for an infinite plane of twice the thick-
ness of the walls of the tube.

The value of the resistance ratio for this case may be obtained
directly from Table 20, page 311, in terms of the quantity

" frroxr
A g xr-\/;, \210) 860 p.2

7 =the thickness of the walls of the tube in cm
x=the parameter defined in formula (207).

For copper tubes the parameter 8, may be obtained very
simply from the values of a, in Table 19, page 311, and the relation

Bo= 10427 a,.
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For values of 8 greater than 4' no table is necessary, since we
have simply, with an accuracy always greater than one-tenth of
I per cent,

Eof—ﬁ (211)

Sufficient experimental evidence is not available to indicate an
accurate method of procedure in the case of tubing where the
ratio of diameter to wall thickness is not large. Measurements
with tubing in which this ratio is as small as two or three indicate

that approximate values of for this case may be calculated by

using for 7, in the ca.lculatmn of the parameter 8, a value equal to
two-thirds of the actual thickness of the walls of the tube.

Tubing which is very thin in comparison with its radius has,
for the same cross section, a smaller high-frequency resistance
than any other single conductor. For this reason galvanized-
iron pipe is a good form of conductor for some radio work, the
current all flowing in the thin layer of zinc. A conductor of
smaller resistance than a tube of a certain cross section is obtained
by the use of very fine strands separated widely from one another;
there are practical difficulties, howeveq;, in making the separation
great enough.

In a return circuit of tubular conductors the distance between
the conductors should be kept as great as 100r 20cm. For tubular
conductors nearly in contact the resistance ratio may be double

|
that for a spacing of a few centimeters,

iﬁ W
[ -

| i

Fi6. 212.—Cross section of strip conductors forming a return circuit with narrow surfaces
in the same plane

Strip Conductors.—If two strips form together a return circuit
and they are so placed that there is only a small thickness of
dielectric between the wider face of one and the same face of the
other (Fig. 212), the resistance ratio may be calculated by formula
(210), using for 7 the actual thickness of the strip.
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As the thickness of the insulating space between the plates is
increased, the accuracy of the formula decreases, but the error
does not amount to more than a few per cent for values of this
thickness as great as several centimeters.

TEUTE R ¢ e
g ©
& 7T
F16. 213.—Cross section of sirip conductors forming a return circuit with wide surfaces in
the same plane

For a return circuit of strips placed with their wider faces in
the same plane (Fig. 213), no formula is available. This is an
unfavorable arrangement. As the distance ¢ is reduced below a

few centimeters the ratio }"?_ increases rapidly and with the strips

very close together may be as great as twice the value for the
arrangement of Fig. 212.

For single strips—that is, for return circuits in which the
distance between the conductors is so great that there is mo
appreciable mutual effect between the conductors—formula (210)
is inapplicable owing to “edge effect”—the effect of the magnetic
field produced by the current in the center of the strip upon the
outer portions of the cross section.

Thus the resistance ratio %- is greater in a wide strip than in a
narrow one of the same thickness, and in every case the resistance
ratio is greater than for the two juxtaposed strips of Fig. 212.
For > between 1 and 1.5, the increase over formula (210) is

usually not greater than 10 pér cent.

Strips of square, or nearly square, cross section have values of }%
not very different from those which hold for round conductors of
the same area of cross section, the values being greater for the
square strip than for the round conductor whose diameter is equal
to the side of the square.

Simple Circuits of Round or Rectangular Wire.—The ratio of the
resistance at high frequencies to that with direct current may be
accurately obtained from Table 17, page 309, for circles or rectangles
of round wire and in fact for any circuit of which the length is
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great compared with the thickness of the wire, provided no con-
siderable portions of the circuit are placed close together. In the
latter case, the resistance ratio is somewhat increased beyond the
value calculated by the previous method and by an amount which
can not be calculated.

The resistance ratio for a circuit of wire of rectangular section
may be treated by the same method as for a single strip. If por-
tions of the circuit are in close proximity, the precautions men-
tioned for two strips near together (p. 303) should be borne in mind.

75. RESISTANCE OF COILS

Single-Layer Coil; Wire of Rectangular Cross Section.—The
only case for which an exact formula is available is that of a
single-layer winding of wire of rectangular cross section with an
insulation of negligible thickness between the turns, the length of
the winding being assumed to be very great compared with the
mean radius, and the latter being assumed very great compared
with the thickness of the wire.

If R =the resistance at high frequency

R, =the resistance to direct current

7 =the radial thickness of the wire

b =the axial thickness of the wire

p =thevolumeresistivity of the wire in microhm-cm
po =the volume resistivity of copper

u=the permeability of the wire

D =the pitch of the winding,

then - may be obtained directly from Table 20, page 311, having

calculated first the quantity 8=107+/2 q, in which e =0.1985 \/%f
Values of a, for copper are given in Table 19, page 311, and the
value of a for any other material is obtained from a, by the relation

a=00+/u %- For values of 8 greater than are included in Table

20 we have simply %m 8.

In practice the ideal conditions presupposed above will not be
realized. To reduce the value calculated for the idealized wind-
ing corrections need to be applied: (1) For the spacing of the
wire, (2) for the round cross section of the wire, (3) for the curv-
ature of the wire, (4) for the finite length of the coil.
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Correction for Piich of the W«.’nd;'ng —To take into account the
fact that the pitch of the winding is not in general equal to the
axial breadth of the wire an approximation is obtained if for g

the argument
B - ﬁ‘/% is substituted.

For values of D greater than about 3b the values of }% thus

obtained are too small.

Correction for the Round Cross Section of the Wire—For coils
of round wire only empirical expressions are known, and more
experimental work is desirable.

To obtain an accuracy of perhaps 10 per cent in the resistance
ratio the following procedure may be used:

Calculate first by (210) and Table 20, page 311, the resistance

’
ratio %, supposing the coil to be wound with wire of square
L]

cross section of the same thickness as the actual diameter, taking
into account the correction for the pitch of the winding. Then

the resistance ratio R{g for a winding of round wire will be found
L]

by the relation
R’ R

> =1+0.59 (212)

Effect of Thickness of the Wire.—Although formula (210) holds
only for a coil whose diameter is very great in comparison with
the thickness of the wire, the error resulting from non-fulfillment
of this condition will, in practical cases, be small compared
with the other corrections and may be neglected.

Correction for Finite Length of the Coil.—For short coils the
resistance ratio is greater than for long coils of the same wire,
pitch, and radius, due to the appreciable strength of the magnetic
field close to the wires on the outside of the coil.

No formulas are available for calculating this effect, but
experiment seems to show that for short coils of thick wire at
radio frequencies the resistance ratio may be expressed by

R_A.B

Ro -JX X’
in which the first term represents the value as calculated by the
formulas of the preceding section for long coils, while the con-

(213)
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stant of the second term has to be obtained by experiment. At
long wave lengths the first term will predominate, but at very
short wave lengths the second term may be equal or even larger
than the first.

For round copper wires we may obtain the constant A by the
relation A =15 500 dR,.

Multiple-Layer Coils.—For this case no accurate formulas have
been derived. Experiment shows that the resistance ratio is
much greater for a multiple-layer coil than for a single-layer coil
of the same wire. Furthermore, the capacity of such a coil has,
as already pointed out, a large effect on the resistance of the
coil. Consequently, it is usually impossible to calculate even
an approximate value for the change of resistance with frequency.
At very high frequencies losses in the dielectric between the wires
may cause an appreciable increase in the effective resistance of the
coil. This effect is proportional to f.

76. STRANDED WIRE

The use of conductors consisting of a number of fine wires to
reduce the skin effect is common. The resistance ratio for a
stranded conductor is, however, always considerably larger than
the value calculated by Table 19, page 311, and Table 17,
page 309, for a single one of the strands. Only when the strands
are at impracticably large distances from one another is this
condition even approximately realized.

Formnlas have been proposed for calculating the resistance
ratio of stranded coumductors,® but although they enable quali-
tatively correct conclusions to be drawn as to the effect of chang-
ing the frequency and some of the other variables, they do not
give numerical values which agree at all closely with experiment.
The cause for this lies, probably, to a large extent in the impor-
tance of small changes in the arrangement of the strands. The
following general statements will serve as a rough guide as to
what may be expected for the order of magnitude of the resist-
ance ratio as an aid in design, but when a precise knowledge of
the resistance ratio is required in any given case it should be
measured. (See methods given in sections 46 to 50.)

Bare Strands in Contact.—The resistance ratio of n strands of
bare wire placed parallel and making contact with one another is
found by experiment to be the same as for a round solid wire

¥ See references 113 to 123 of the Bibliography.
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which has the same area of cross section as the sum of the cross-
sectional areas of the strands; that is, n times the cross section
of a single strand. This will be essentially the case in conductors
that are in contact and are poorly insulated, except that at high
frequencies the additional loss of energy due to heating of the
imperfect contacts by the passage of the current from one strand
to another may raise the resistance still higher.

Insulated Strands—As the distance between the strands is
increased, the resistance ratio falls, rapidly at first, and then
more slowly toward the limit which holds for a single isolated
strand. A very moderate thickness of insulation between the
strands will quite materially reduce the resistance ratio, provided
conduction in the dielectric is negligible.

Spiraling or twisting the strands has the effect of increasing the
resistance ratio slightly, the distance between the strands being
unchanged.

Transposition of the strands so that each takes up successively
all possible positions in the cross section—as for example, by
thorough braiding—reduces the resistance ratio but not as low
as the value for a single strand.

Twisting together conductors, each of which is made up of a
number of strands twisted together, the resulting composite con-
ductor being twisted together with other similar composite con-
ductors, etc., is a common method for transposing the strands
in the cross section. Such conductors do not have a resistance
ratio very much different from a simple bundle of well-insulated
strands.

The most efficient method of transposition is to combine the
strands in a hollow tube of basket weave. Such a conductor is
naturally more costly than other forms of stranded conductor.

Effect of Number of Strands.—With respect to the choice of the
number of strands, experiment shows that the absolute rise of
the resistance in ohms depends on the diameter of a single strand,
but is independent of the number of strands. Since, however,
the direct-current resistance of the conductor is smaller the greater
the number of the strands, the resistance ratio is greater the
greater the number of strands. Reducing the diamszter of the
strands reduces the resistance ratio, the number of strands remain-
ing unchanged, but to obtain a given current-carrying capacity,
or a small enough total resistance, the total cross section must
not be lowered below a certain limit, so that, in general, reducing
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the diameter of the strands means an increase in the number of
strands.

With enameled strands of about 0.07 mm bare diameter twisted
together to form a composite conductor the order of magnitude
of the resistance ratio may be estimated by the following procedure.
Calculate by Table 19, page 311,and Table 17, page 309, theresist-
ance ratio for a single strand at the desired frequency (this value
of R/R, will lie very close to unity), and carry out the same calcu-
lation for the equivalent solid wire, whose diameter will of course
be d+/n, where n=the number of strands and d =the diameter
of a single strand. Then the resistance ratio for the stranded
conductor will, for moderate frequencies, lie about one-quarter
to one-third of the way between these two values, being closer to
the lower limit. This holds for straight wires up to higher fre-
quencies than for solenoids. (See critical frequency mentioned in
second paragraphbelow.) Not all so-called litzendraht is as good
as this by any means. For a woven tube the resistance ratio may
be as low as one-tenth of the way from the lower to the upper
limits mentioned.

Cotls of Stranded Wire.—In the case of solenoids wound with
stranded conductor, the resistance ratio is always larger than for
the straight conductor, and at high frequencies may be two to
three times as great. It is ajpreciably greater for a very short
coil than for a long solenoid.

For moderate frequencies the resistance ratio is less than for a
similar coil of solid wire of the same cross section as just stated,
but for every stranded-conductor coil there is a critical frequency
above which the stranded conductor has the larger resistance
ratio. This critical frequency lies higher the finer the strands
and the smaller their number. For 100 strands of say 0.07 mm
diameter this limit lies above the more usual radio frequencies.

This supposes that losses in the dielectric are not important,
which is the case for single-layer coils with strands well insulated.
In multiple-layer coils of stranded wire, dielectric losses are not
negligible at high frequencies.
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77. TABLES FOR RESISTANCE CALCULATIONS

TABLE 17.—Ratio of High-Frequency Resistance to the Direct-Current Resistance

[See formulas (a07), (308), and (209)]
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TABLE 19.—Values of the Argument «, for Copper Wire 0.1 cm Diasmeter and

8€6 p.d
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MISCELLANEOUS FORMULAS AND DATA
78. WAVE LENGTH AND FREQUENCY OF RESONANCE

Nom = 1.8838 X 10'4/LC (cgs electromagnetic units) (214)

=6.283  +/L cgs electromagnetic C cgs electrostatic (215)

Am =0.05957 +/L cgs electromagnetic C micromicrofarad (216)

=1.884  +/L microhenry C micromicrofarad (217)
=1884 L microhenry C microfarad (218)
=59 570 +/L millihenry C microfarad . (219)
=1 884000 /L henry C microfarad (220)
i 159.2
ey (e (g
K 5033
+L millihenry C microfarad (a43)
= 159 200 (223)
+L microhenry C microfarad ¢
e 1000 (224)
vL henry C microfarad
o 31620
VL millihenry _C microfarad (225)
4 1 000 000 (226)
L microhenry C microfarad
127
T= e (227)
hﬂ_w (228)
L]
= 1.884 X 10 (229)

@
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79. MISCELLANEOUS RADIO FORMULAS

When units are not specified, international electric units are
to be understood. These are the ordinary units, based on the
international ohm and ampere, the centimeter and the second.
Full information is given on electric units in reference No. 152,
Appendix 2.

Current in Stmple Series Circutt.—

T E
\/RT-F ( wL — wLC)’ (230)

Phase Angle.—
X XL _Xq
tan f =5 = 7 (231)
wl — B

7 in simple series circuit, (232)

Sharpness of Resonance.—

Ir: _Il’
e a3 (233)
—*é— E (See p. 37.)
Current at Parallel Resonance.— \
ER
Pacistaih (234)
R+l (See p. 39.)
Coefficient of Coupling.—
k X
= (235
M ; 5 } ;
) o for direct and inductive coupling (236)
T 4 n :
=¥Z—* for capacitive coupling. (237)
(See p. 49.)
Power Input in Condenser—
P =0.5 X 10*NCE? watts (238)

for C in microfarads, E, in volts, and N =number of charges per
second.
486861 O-38—21
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Power Loss in Condenser—
P=wCE?sin ¢
Condenser Phase Difference—
y=rwC
for ¢ in radians, r in ohms, C in farads.
¥=0.1079 'TC degrees
for # in ohms, C in micromicrofarads, \ in meters.
%
¥ =380. 3 seconds
for r in ohms, C in micromicrofarads, A in meters.
0.001

r=yX—— gk A >(01540hms

for ¢ in minutes, C in microfarads, A in meters.
Emnergy Associated with Inductance—

W =—LD
2

Inductance of Corl Having Capacity:

L

La=r—@CL

for C in farads, L in the denominator in henries.

&h :
Ly=L (1 +3.553 T) approximately

(239)

(240)

(241)

(242)

(243)

(244)

(245)

(246)

for A in meters, C' in micromicrofarads, L in the parentheses in
microhenries, This formula is accurate when the last term is small

compared with unity,

Current Transformer—
I, _mf , 9R,
g ?T( i wl,

I s+t

_,-_..__

I

Audibility—

(247)
(See p. 154.)

(248)
(See p. 166.)
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Natural Oscillations of Horizontal Antenna.—
x”%”\‘col;mm“l: 35, --0n (249)

for A\ in meters, C,=capacity in microfarads for uniform voltage,
L,=inductance in microhenries for uniform current.
Approximate Wave Length of Resonance for Loaded Antenna—

)L—1884JC,iL+L—;) (250)

where L =inductance of loading coil in microhenries and other
quantities are as in preceding formula.
Radiation Resistance of an Antenna.—

]
R=1580 (;i) ohms (251)

where h=height from ground to center of capacity, and % and A
are in the same units, and A is considerably greater than the fun-
damental wave length.

Electron Flow From Hot Filament.—

I,=AT¥er (252)

where I, =electron current in milliamperes per centimeter ? of fila-
ment surface, T = absolute temperature, and A and b depend on
metal of filament; for tungsten A =2.5X 10%, b= 52500.

Electron Current in 3-Elecirode Tube.—

I,=Fk (E,+ ko)t (253)
where Ep=plate voltage, v,=grid voltage, &, =amplification con-
stant.

Resistance Measurement by Resistance—V ariation Method Using
Undamped Emf.— :
R= R‘ITIIl (254)
Resistance M. easurement by Resistance—V ariation Method Using
Impulse Excitation.—

R=Ry—13 (255)

Resistance Measurement by Reactance-Variation Method Using
Undamped emf.—

I3
R - X‘l Ir’:IL’ (256)
where X, =change of reactance between the two observations of
current. Various particular cases of this formula are given in
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Natural Frequency of Simple Sertes Circuit.—

1 R2
fm— \/ CL il (257)

“’Za,‘/w(%)’ (258)

Number of Oscillations to Reduce Current to 1 Per Cent of Initial
Value in Wave Train.—

.6
n-ig (259)
Logarithmic Decrement.—
&y 0

8= ].Og,}-; = ? (260)

R C

e e 7RwC =7R i

™

~ sharpness of resonance
=7 X phase difference of condenser or coil, the
resistance being in one or the other
_average energy dissipated per cycle
~ 2 X average magnetic energy at the current maxima

R)

6 =0.00167 5 (261)
for R in ohms, A\ in meters, L in microhenries.
8=5918 }%‘ (262)

for R in ohms, A in meters, C in microfarads.

§=3.1416 RJ% (263)

for R in ohms, C in microfarads, L in microhenries.
Current at resonance Produced by Slightly Damped emf Induced in
a Circurt.—

ekl NEO’
P = s 759 (264)
Decrement Measurement by Reactance—V ariation Method.—
’ - Cz = C1 1 1’
o (e (265)

(See p. 187 for variations of this formula.)
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80. PROPERTIES OF METALS

TABLE 21
Microhm- |T rature| Specific Tenslle | Melting
s | e | Gl | e | e
2.828 0. 0039 270 30 000 659
4.7 . 0036 BE  eadsssivinas 630
120 . 004 -5 JUNR [ 5 Pes , n
7 - 002 8.6 70 000 900
7.6 . 0038 R [ O S 321
87 .0007 81 150 000 1250
49 + 00001 8.9 120 000 1190
1.7241 - 00393 8.89 30 000 1083
Lm . 00382 8.89 60000 |..ccacss .
ssensnssmnssnssanas| 0@ . 00016 8.9 95 000 1500
German silver, 18 per eent ................... 33 . 0004 8.4 150 000 1100
German silver, 30 per cent. See Constantan.
Gold.. o L P SR 2.44 00342 19.3 20 000 1063
In Ia. SuCnnm.hn.
Ideal. See Constantan.
Iron, 99.98 percentpure. ........ccvvuvnnneaa| 10 . 0050 L T ST 1530
. 0039 1L 4 3 000 327
. 004 1.74 33 000 651
- 00001 8.4 150 000 910
- 00089 13.545 1] —38.9
- 004 [ [ e 2500
. 0020 8.9 160 000 1300
- 0004 82 150 000 1500
. 006 8.9 120 000 1452
. 0033 12.2 39 000 1550
. 0018 89 25 000 750
- 003 214 50 000 1755
. 0038 10.5 42 000 960
R A 10.4 . 005 7.7 53 000 1510
R R S 11.9 . 004 7.7 58 000 1510
Steel, Siemens-Martin. . 18 . 003 .7 100 000 1510
Steel, MANGANSSHL. .. .cvovvrvnncnnnncnsnanans| 10 . 001 7.5 230 000 1260
Superior. See Climax.
Tomalatf, cuusvunssvriivsannnesiveninsnnses] RS . 0031 b L5 T EC R 2850
47 . 00001 B3 Jrenuccssrnnosficaseinnna
115 . 0042 7.3 4000 232
56 . 0045 19 500 000 3000
58 . 0037 7.1 10 000 419

The resistivities given in Table 21 are values of p in the equa-
tion R,= p%, where ! =length in centimeters and s = cross section in

square centimeters. This formula gives the low-frequency or direct-
current resistance of a conductor. For the calculation of resist-
ances at high frequencies, see Tables 17 to 20, pages 309-311.

486861 O-58-22
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The values given for resistivity and temperature coefficient of
copper are the international standard values for commercial
copper. Any departure from this resistivity is accompanied by
an inverse variation in the temperature coefficient. This is true
in a general way for other metal elements. In the case of copper
the resistivity and temperature coefficient are inversely propor-
tional, to a high degree of accuracy.

The “temperature coefficient at 20°C” is a,, in the equation
R,=R,, (1 +a,[t—20]). In some cases the temperature variation
does not follow a straight-line law; in such cases a,, applies only
to a small range of temperature close to 20°. Steel is an example,
the resistance rise at high temperatures being faster than propor-
tional to temperature.

Constantan and the other wires (Advance, etc.) having substan-
tially the same properties, are alloys of approximately 60 per cent
copper and 40 per cent nickel. They are used in rheostats and
measuring instruments.

German silver is an alloy of copper, nickel, and zinc. The per
cent stated indicates the percentage of nickel.

Manganin contains about 84 per cent copper, 12 per cent man-
ganese, and 4 per cent nickel. It is the usual material in resist-
ance coils. Its very small thermal electromotive force against
copper is one of its main advantages. The similar alloy, therlo,
is used for the same purposes.

Monel metal is an alloy containing approximately 71 per cent
nickel, 27 per cent copper, and 2 per cent iron.

NOTICE

Appendices 1 and 2, pages 319 to 333, have been
purposely omitted from this printing because the material
is out-of-date.

Appendix 3, “Symbols used in the Circular’”’, has been
transposed from page 334 to page 2.

An errata, listing the pages and corrections, is also
printed on page 2.



INDEX

Page

Antenna, constants. . .. T Br
uurmt.mmmmtof wit.hvclt-mmeut 156
devel t of har ic cscillations. ....... 78

formula for natural oscillations of horizontal. 315
hmd.l.menulmwlenzthu.

funnu.l.n forwavelength. . ................. 318

£ $tur P R

wave length obtainable from
Armstrong, regenerative amplification by elec-

App-mt.up-dtrd;mdm.....
inductance of coils.. P NP
permeability........... ARSI AN e E R AR

Arc, Poulsen, for producing high-frequency cur-




