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THE SELF-CAPACITANCE OF SINGLE LAYER TOROIDAL 

INDUCTORS WITH FERRITE CORES 

 
All coils have a self-resonant frequency (SRF), and as this frequency is approached the 

inductance and resistance increase while the Q decreases until a frequency is reached 

where the coil resonates in a similar way to a parallel tuned circuit. The coil thus 

appears to have self-capacitance and if this can be determined the changes in inductance 

with frequency can be readily calculated. This article derives equations for the self-

capacitance of  toroidal coils with ferrite cores. 

 

 

 

 

1. INTRODUCTION 

All coils show a self-resonant frequency (SRF) similar to a parallel tuned circuit, and because of this the 

accepted theory assumes that the coil has self-capacitance which along with its inductance produces this 

resonance. So in this theory the inductance is constant with frequency and the changes seen are due to the 

effects of a parallel self-capacitance. Further support for the self-capacitance theory is given by the fact that 

the measured changes are accurately modeled by a parallel tuned circuit.  However, nowhere in a coil can 
this capacitance be measured or deduced, and this is because this capacitance does not exist and the 

resonance is due to standing waves on the wire, similar to a transmission-line. The inductance change is 

therefore a real change and not an apparent change, but nevertheless the self-capacitance model is a very 

useful representation. It is considered here in some detail and was found to have the form Cself = A + B/N2
 

where A and B are constant for any particular size of toroid and ferrite material. 

The theory here is supported by measurements, and in comparing the two it was important that the large 

uncertainty in ferrite permeability was eliminated, and this was done by factoring all measurements so that 

at the low frequencies they corresponded with the theoretical values. This is discussed in Section 9.1.  

Key equations are highlighted in red, and a summary of these is given in Section 12. 

This article considers coils with a toroidal ferrite core, but the author has previously considered self-

resonance in cylindrical air coils (ref 1). 

 
 

 

 

2. PUBLISHED MEASUREMENTS OF SELF CAPACITANCE 

It is very useful in verifying a new theory to have some well documented independent experimental results. 

The only ones found were those carried-out by Knight (ref 2), who wound 22 coils on an Amidon FT 50-61 

ferrite core (diameter of 12.7 mm) with from 4 to 36 turns.  

A comparison of his measurements and the equation developed here for that core is plotted below: 
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Figure 2.1 Comparison of Theory with Knight’s measurements 

 

Knight’s coils all had connection leads approximately 12mm in length, and so his equation includes the 

capacitance of these, which is not included in the theory here. More details on the comparison are given in 

Section16 : Appendix 4. 

 

 

3. OUTLINE OF THEORY 

It is shown in this paper that self-resonance is due to a standing wave between the conductor and the 

surface of the ferrite, and the phase velocity of this wave is determined by the ferrite permeability and, to a 
lesser extent, the ferrite permittivity. From this velocity the SRF can be calculated along with the apparent 

self-capacitance. The change in inductance with frequency then can be determined from standard equations 

for lumped element circuits. 

It is shown that when the permeability is constant with frequency the self-capacitance is dependent only 

upon the ferrite dimensions and the number of turns, and is independent of the permeability, or the diameter 

of the wire, or the diameter of the coil. When the permeability is not constant (the normal condition) 

allowance for this can be made by increasing the value of the self-capacitance. 

 

 

4. SRF FROM THE TRANSMISSION-LINE MODEL 

The self-resonant frequency is given by the following equation (see Appendix 3): 

 

Self-resonant Frequency fr  = 300 / [ 2 lpath  (μ’) 
0.5

]       MHz    4.1 

 

Where  lpath = [(N lp )
2
 + (α le )

2
]

0.5
   

    N is the number of turns 

    le is the length of the magnetic path in metres 

    lp is the length of the periphery of the ferrite cross section in meters 

    μ’ is the relative permeability of the ferrite (see below) 

    α (see below) 

 

The factor α is the fraction of the toroid circumference covered by the winding. Here it is assumed that 

there is a 10% gap and so α=0.9 (see Section 9.2). 
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The equation above assumes that there is a standing wave on the conductor so that it resonates in the same 

way as a transmission line. Initially it was assumed that the wave would follow the conductor, but 

experiments show that the path length is somewhat shorter than this, and is consistent with it being the 

projection of the conductor onto the surface of the ferrite. For instance if the ferrite and the coil have a 

circular cross-section, with the coil having a larger diameter than the ferrite of course, the wave follows a 

helical path having the same pitch as the coil but with the diameter of the ferrite. This was well 
demonstrated when a coil was very loosely wound around a toroid so that its cross-sectional area was about 

twice that of the toroid, and the SRF was the same as for a tightly wound coil with the same number of 

turns. So notice that the equation above for the path length lpath involves only the ferrite dimensions and not 

the coil dimensions or the diameter of the wire (an alternative explanation is given in Appendix 3). 

In the above equation the factor μ’ is the ferrite permeability, commonly given graphically as below in red 

(this data has been extracted from the published curves) : 

 

 

 

Figure 4.1 Typical Permeability Curves 

 

 

Also shown is the loss component μ’’, and the ratio of these is the Q of the ferrite: 

 

    Qf =  μ’ / μ’’       4.2 

   

The Q decreases with frequency and becomes unity at 30 MHz for this material, so the normal operating 
range would be up to 25 MHz. It is important to note that this is the Q of the ferrite alone, and an inductor 

made with this ferrite will have a lower Q due to self-resonance, and also due to the loss in the conductor, 

although this will often be less significant (conductor loss is considered in Section 8.2). 

 

As with all transmission-lines a number of resonances are possible, at frequencies where the length of the 

line is a multiple of λf /4, where λf is the wavelength in the presence of the ferrite.  Normally one end of the 

coil is grounded and in an air-cored coil this leads to the first resonance being λ/4, with the grounded 

terminal providing an effective transmission-line short circuit (ref 1). However when a ferrite core is 

introduced a magnetic short-circuit would be needed to excite the λ/4 resonance, and this is not possible. So 

the first resonance is λ/2. This is also the first resonance when the coil is inserted into a test jig for the 

measurement of inductance, resistance and the SRF.  
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An important consequence of the above equation is that there is not a single value for the SRF, as 

commonly assumed. This is because it is dependent on the ferrite parameters and these change with 

frequency. For instance taking a 10 turn coil wound onto a Ferroxcube TN23/14/7 core the SRF varies with 

frequency as follows : 

 

 

 

Figure 4.2  The change of SRF with frequency 

 

This curve reflects an inverse of the permeability curve μ’ such as Figure 4.1 (strictly the inverse of the 

square root of the permeability). So if the inductance was assumed to be constant this curve shows the self-

capacitance reducing at high frequencies. 

So in calculating the change in inductance at any frequency due to the SRF, the SRF for that frequency 
must be used. For instance in calculating the inductance at 10 MHz we see from the above curve that the 

SRF at this frequency is 60 MHz, but when the operating frequency is raised to 60 MHz the SRF has 

increased to 80 MHz. 

 

 

5. SELF CAPACITANCE : LOSSLESS  MODEL 

Self-resonance increases the apparent inductance, being higher as the self-resonant frequency is 

approached. This change in inductance with frequency can be modeled by a parallel circuit consisting of a 

perfect inductor and a perfect capacitor, as below: 

 

 

Figure 5.1 Equivalent circuit for self-resonance 

 

In this representation the coil has a fixed inductance at all frequencies, and this inductance is equal to its 

low frequency value (ie low compared to its SRF). The capacitor also has a fixed value, chosen to produce 

a change in reactance at the terminals which matches that of the real inductor. Neither component has loss. 

The resonant frequency of the above circuit is : 
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   fr = 1/ [2π (LC)0.5]      5.1 

 

So the value of the capacitor C is  

 

   C = 1/ [(2π fr )
2 L ]      5.2 

 
If the frequency is in MHz, the inductance in µH and the capacitance in pf this equation becomes : 

 

 Self-resonant Capacity   Cself = 106 / (2π fr
 )2 / Lfo           pf    5.3 

 

Lfo can be readily calculated from the factor AL, given by most ferrite manufacturers, so Lf0= AL N2, where 

N is the number of turns (see also Section 9.1). The above equation then becomes : 

 

 Self-resonant Capacity   Cself = 106 / (2π fr
 )2 / (AL N2)           pf    5.4 

 

    where  fr  is the resonant frequency in MHz given by Equation 4.1 

     AL is in µH/N2 

 
 

 

 

6. SELF CAPACITANCE WHEN PERMEABILITY IS CONSTANT 

This section derives an equation for the self-capacitance when the permeability is constant with frequency.  

Inserting the equation for the resonant frequency, Equation 4.1, into that for the self-capacitance, Equation 

5.4, gives : 

 

  Cself = 106 µf [(N lp )
2 + (α le)

2] /[(2π)2 300/2)2 AL N2] 

 

    = 1.13 µf [(N lp )
2 + (α le)

2]/ [AL N2] 

 
For lengths in mm and AL in µH/N2, this becomes :  

 

Cself = 1.13 10-6 µf  lp 
2 / AL  +  1.13 10-6 µf [ (α le)

2/ AL] / N2   6.1 

   

   where  lp is the length of the periphery of the cross-section in mm 

    µf  is the low frequency relative permeability of the ferrite 

α is the proportion of ferrite with winding (ie 0.9) 

le is the length of the magnetic path in mm  

AL is in µH/N2
 

N is the number of turns 

 
 

This equation has been written in the form Cself = A +B/N2 and the reason for this will become clear in 

Section 7 where it is shown that the effects of changing permeability can be allowed-for with the addition 

of another term in 1/N2.  

As an example, the Amidon FT 50-61 toroid has AL =69/1000, le =30.6 mm, lp = 15.35 mm, and µf=120, 

giving the self-capacitance as : 
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Figure 6.1 Calculated Self Capacitance of FT50-61 core 

   
The overall reactance of the circuit Figure 5.1 can now be calculated from normal circuit theory using the 

value of Cself given by the above equation: 

    

Xt = -XL XC/(XL-XC)      6.2 

     

At frequencies below the resonant frequency this circuit is inductive, with an apparent inductance Lapp 

given by : 

 

   Lapp = Xt / ω = - XL XC/(XL-XC)/ ω     6.3 

 

where  XL = ωLfo = ω AL N2 
     Xc = 1/(ωCself)  

     Cself given by Equation 6.1 

 

For the FT50-61 toroid with 11 turns  Lfo =8.97 µH and the self-capacitance is 0.7 pf (Equation 6.1). The 

apparent inductance (Equation 6.3) is then, in red: 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 Self Capacitance Model cf Measured Inductance 

 

Also shown in blue are the measured values. Agreement is very poor and this is because the above analysis 

assumes that the permeability is constant at its low frequency value, whereas it changes considerably. 
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A method for allowing for the changing permeability is given in the next section. 

 

 

 

7. CORRECTING FOR PERMEABILITY CHANGES 

7.1. Introduction 

The equations given so far correctly predict the SRF (see Figure 6.2) but do not adequately describe the 
change in inductance with frequency, and this is because the permeability is not constant. The change in 

permeability can be quite large but is somewhat disguised by the usual logarithmic representation (Figure 

4.1), and is shown more clearly if plotted linearly as below: 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 7.1.1 Self Capacitance Model cf Measured Inductance 
 

 

The above detail is difficult to obtain with any accuracy from the manufacturer’s logarithmic curves, and so 

it is from the author’s own measurements on the Amidon FT 50-61 core (see Appendix 1).  

Given that the apparent inductance Lapp is defined by Equations 6.1 and 6.3, modification of either of these 

equations is an option for allowing for changes in permeability. So two methods are given : the first method 

increases Cself (Equation 6.1) in order to reduce the resonant frequency, and this is described below. The 

second method modifies Equation 6.3 with a frequency dependent value of inductance and this is described 

in Appendix 6. 

 

7.2. Increased Cself to allow for changing permeability 

The first method is to increase the value of Cself, so that the SRF is reduced. For instance taking the FT50-

61 core with 11 turns, if the capacitance is increased from 0.7 pf to 1.34 pf the SRF reduces from 80 MHz 

to 45 MHz, and the correlation with measurements improves considerably over the useful range to 25 MHz 

(compare with Figure 6.2) :  
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Figure 7.2.1 Self Capacitance Model and Measured Inductance Matl 61 

 

 

 

Clearly for this optimum match the new resonant frequency fr’ must now be related to the frequency at 

which the permeability peaks fp (figure 7.1.1), and in general we can say fr’ = k fp. An additional 

capacitance must be added to the self-capacitance and this must be chosen to resonate at frequency fr’ with 

the inductance Lfo, and this gives a value of C = 106/[(2π k fp)
2 Lfo,], for fp in MHz and Lfo in µH. 

Including the self-capacitance Cself (Equation 6.1) and noting that Lfo =ALN2, this gives : 

 

C’self = 1.13 10-6 µf [ lp 
2 / AL]   +  1.13 10-6 µf [ (α le)

2/ AL] / N2   +  106/[(2π k fp)
2 AL N2] pf 7.2.2 

 

where  lp is the length of the periphery of the  cross section in mm 

    µf  is the low frequency relative permeability of the ferrite 

α is the proportion of ferrite with winding (e.g. 0.9) 

 le is the length of the magnetic path in mm 

AL is in µH/N2
 

N is the number of turns 

fp is in MHz 

k =2 for material 61 (see below) 

 

Notice that the first term is dependent only on the ferrite parameters and independent of N, whereas the 

second and third terms reduce as N2. 
For the Amidon FT50-61 toroid (Material 61) µf = 125, k=2 (see below), fp =30 MHz, AL= 0.069 µH/N2, lp 

= 15.35 mm, le =30.6 mm and then Equation 7.2.2 gives: 

 

   C’res = 0.49 + 1.8/N2 + 104/N2 pf    7.2.3 

 

This equation is plotted below. 
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Figure 7.2.2 Self Capacitance Model for FT 50-61 

 

The factor k was found by matching graphically the calculated change in inductance with frequency, using 

the value of Cself given by 7.2.2, with the measured inductance. For material 61, a Ni-Zn material, a  value 

of k=2 was optimum, however the same factor also gave a good match with Mn-Zn material 77, as shown 

below. Given that these are very different ferrites it suggests that a factor of k=2 may be applicable to all 

ferrites. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7.2.3  Self Capacitance Model and Measured Inductance Material 77 

 

 

 

7.3. Simplification of Equation 7.2.2  

The middle term of Equation 7.2.2 generally contributes less than 6% to the value of C’self and therefore 

can often be ignored (see Appendix 8), as can be seen by Equation 7.2.3. The exception is when the 

permeability is below 16 or the number of turns is less than 5 when the middle term should be used. In 

addition, the first term above can be expressed in terms of the toroid dimensions only (Appendix 5) to give 

: 
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  C’self ≈ [1.13 10
-3 

 le lp 
2
 ] / [0.4 π Ae)]  +  10

6
/[(2π k fp)

2
 AL N

2
] pf  7.3.1 

 

where  lp is the length of the periphery of the  cross section in mm 

le is the length of the magnetic path length in mm 

    µf  is the low frequency relative permeability of the ferrite 

AL is in µH/N
2
 

N is the number of turns 

fp is the frequency in MHz at which µf peaks  

Equation is valid for N ≥ 5 AND µ ≥ 16 

 

If the above equation is expressed as C’self  = A + B /N2, the uncertainty due to the manufacturer’s tolerance 

on the ferrite parameters is C’self  = A ±12%  + (B/ N2 )  ±20%  (see Appendix 7). 

 

It is emphasised that Equations 7.2.2 and 7.3.1 are used in conjunction with Equation 6.3 unmodified, to 

give the overall apparent inductance : 

 

   Lapp = Xt / ω = - XL XC/(XL-XC)/ ω     7.3.2 

 

where  XL = ωLfo 

     Xc = 1/(ωC’self)  

     C’self given by Equation 7.2.2 or 7.3.1 

 

 

7.4.  Examples  

The following are examples of the self-capacitance as calculated from Equation 7.3.1. A core size of OD 

12.7 mm, ID 7.15 mm, and height 4.78 mm has been used along with Fair-Rite data on the permeability, 

and the AL value for this core size and permeability. The frequency at which the permeability peaks, fp , has 

been read from the published curves of permeability.  

 

           Material      µf  AL(µH/N2) fp (MHz) C’self (pf) 

 68 Ni-Zn 16 0.00864  210  0.47 + 17/N2 

 67 “ 40 0.0022  80  0.47 + 45/N2  

 61 “ 125 0.069  20  0.47 + 229/N2 
 52 “ 250 0.148  8  0.47 + 702/N

2
 

 77 Mn-Zn 2000 1.180  0.8  0.47 + 8385/N2 

 

Notice that the first term in C’self is constant at 0.47 pf, independent of material, and this because it is 

determined only by the toroid dimensions (see Appendix 5).  

 

7.5. Possible Universal equation for C’self  

An equation is developed here for the self-capacitance which might be universal for all modern ferrites, and 

requires only the dimensions of the toroid to be known along with its low frequency permeability. 

In Equation 7.3.1 the factors fp and AL are not independent, because there is a close relationship between fp 

and µ, and AL is directly proportional to µ. Snoek in 1948 showed that the product of  fp and µ are nearly 

constant (see Hamilton ref 3). This relationship is most strikingly demonstrated by the following curves 

from Fair-Rite, for four of their materials (ref 4).  
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Figure 7.5.1 Relationship between fp and µ 

 

These curves show the relationship between fp and µ, to be : 

 

   fp = K / [µf 
x]   MHz      7.5.1 

 

where K= 5300 and x = 1.16 (for Fair-rite materials) 

 
  

Substituting this equation into the second term of Equation 7.3.1, and noting that AL = µoµf Ae/ le  = 0.4 π 

103 µf Ae / le  where AL is in µH/N2, and Ae is in mm2 and le  in mm. 

 

 

106/[(2π k fp)
2 AL N2]  = 109 µf 

(2x-1) le  / [(2π k)2 K2 0.4π Ae N
2]  

=109 µf 
(2x-1) le  / [ 49.6 k2 K2 Ae N

2] 

 

Equation 7.3.1 then becomes : 

 

C’self ≈ [1.13 10
-3 

 le lp 
2
 ] / [0.4 π Ae)]  +  10

9
 µf 

(2x-1)
 le  / [ 49.6 k

2
 K

2
 Ae N

2
]   pf 7.5.2 

 

where  lp is the length of the periphery of the  cross section in mm 

le is the length of the magnetic path length in mm 

    µf  is the low frequency relative permeability of the ferrite 

N is the number of turns 

Ae is the toroid cross-sectional area in mm
2
 

For Fair-Rite materials x=1.16, k=2 and K =5300  

 

Notice that the only ferrite parameters which are needed are its dimensions and its low frequency 

permeability.  The factors x, k and K have been determined for the Fair-Rite materials but it is possible that 

they are common to all modern ferrites. If so, the above equation may be generic and applicable to ferrites 

from any manufacturer.   

 

If the above equation is expressed as C’self  = A + B /N2, the uncertainty for Fair-Rite materials due to the 

tolerance of the ferrite parameters is C’self  = A ±11%  + (B/ N2 )  ±35%  (see Appendix 7) 
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7.6. The Effect of Ferrite Tolerances 

We now have two equations for calculating the self-capacitance, Equations 7.3.1 and 7.5.2. For the toroid 

given in Section 7.4 these give the following values : 

 

    

           Material      µf  C’self Equation 7.3.1 C’self Equation 7.5.2 

 68 Ni-Zn 16 0.48 + 17/N2  0.47 + 15/ N2 

 67 “ 40 0.47 + 45/N2  0.47 + 50/N2 

 61 “ 125 0.47 + 229/N2  0.47 + 218/N2  

 52 “ 250 0.46 + 702/N2  0.47 + 538/N2 

 77 Mn-Zn 2000 0.44 + 8385/N2  0.47 + 9341/N2 

 
The differences are due to the tolerances in the manufacturer’s data. 

So what effect would these tolerances have? Taking the Example in Figure 7.2.1, if the capacitance is 

increased by 20% the correlation with measurements changes to : 

 

 

  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 7.6.1 The Effect of 20% increase in C’self (compare with Figure 7.2.1) 

 
 

The correlation degrades by only 2% at frequencies up to 20 MHz, and so the calculation is relatively 

insensitive to the manufacturing tolerances. 

 

 

 

 

8. LOSSES IN THE SELF CAPACITANCE MODEL 

8.1. Losses in the Ferrite 

Ferrite loss increases with frequency, as shown below by the reducing Qf of the Fair-Rite Material 61 

(where Qf = µ’/µ’ has been derived from the published curves reproduced in Figure 4.1): 
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Figure 8.1.1 The Q of Fair-Rite Material 61 

 

 

NB the value of µ’’ below 6 MHz is not given by Fair-Rite and so the data at the lower frequencies is from 

measurements taken by the author 

 

To account for this loss the model Figure 5.1 could include a parallel resistance Rp : 
 

  

 

 

 

 

 

  

 

Figure 8.1.2 Self-capacitance model with Loss 

 

 
The Q is then be given by (ignoring the effects of self-resonance for now): 

 

   QR = Rp /(2 π f L)       8.1.1 

 

Rp must be chosen to make this Q equal to that of the ferrite (µ’/µ’’), so : 

 

   Rp = (2 π f L) (µ’/µ’’) = 2 π f N2 AL (µ’/µ’’)    8.1.2 

 

    where   f is in MHz 

     AL in µH/N2      

  
In the low frequency region the ferrite Q decreases as roughly 1/f, so that (µ’/µ’’) = ψ/f, where ψ is to be 

determined for each ferrite from its permeability curves. So : 

 

Rp  = 2 π N
2
 AL ψ      8.1.3  
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For the Fair-Rite material 61, we find from Figure 8.1.1 that ψ = f (µ’/µ’’) = 660 (ie at 10 MHz, µ’/µ’’ = 

66), and the Q calculated from Equations 8.1.1 and 8.1.3 is then : 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 8.1.3 The Q with parallel resistance Rp 

 

The model is good up to about 10 MHz, but above that frequency the ferrite Q decreases dramatically, and 

this simple model with a fixed value of Rp is no longer valid. 

The analysis so far has not allowed for the effects of self-resonance, and if this is included Equation 8.1.1 

becomes (see Section 10): 

 

   QR = Rp [1- (f/fr)
2
]/[2 π f N

2
 AL]     8.1.4 

 

    fr is the self-resonant frequency in MHz given by Equation 4.1 

    AL is in µH/N
2
 

     

When the number of turns is small, fr is large and the factor [1- (f/fr)
2] is close to unity, and the effect of 

self-resonance is small. However when the turns are large it is more significant, and for instance with 55 

turns wound onto a Fair-Rite Toroid which has dimensions of OD 12.7 mm, ID 7.15 mm, and height 4.78,  

material 61, fr = 16 MHz, and Equation 8.1.4 gives: 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 8.1.4 Modelled Q with effects of SRF (Material 61) 
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It should be appreciated that the calculated reduction in Q above 6 MHz (green curve) assumes that the 

ferrite Q decreases as per the red curve (ie Rp is constant), and so the real decrease above 10 MHz is 

somewhat greater than that shown by the green curve. 

 

For the Fair Rite material 77 (Mn-Zn), ψ = f (µ’/µ’’) = 3 (ie at 0.1 MHz, (µ’/µ’’) = 30), and for the same 
size core the Q calculated from Equations 8.1.3 &  8.1.4, with 20 turns (fr = 1.63 MHz) is: 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 8.1.5 Modelled Q with effect of SRF (Material 77) 

 

 

8.2. Conductor Losses 

The resistance of a conductor is given by R = ρ l / A, where ρ is the resistivity of the conductor, l  is its 

length, and A its cross-sectional area. At high frequencies the current flows only in a thin skin on the 

surface of the conductor and the equation becomes, for a straight conductor, with a circular cross-section: 

Ro = ρ  l / (π dw δ)      8.2.1 

    

     where   dw is the wire diameter 
      δ is the skin depth = 66.6 /√f  mm for copper 

      f is in hertz. 

 

When the wire is wound into a coil the resistance increases due to the proximity effect of adjacent turns. 

This effect can be estimated from the increase in resistance of a number of parallel wires, given by  

(reference 5) :     

R/Ro ≈ 2.2 / [1+ 1.35/n]     8.2.2 

where n is the number of wires 

. 

The above equation is for wires close and touching, and a lower ratio will be given when the wires are 

spaced, approximately by the ratio [1 + 1/ (2 (p/ dw)2  +1)]/1.33, (also reference 5) where  p is the distance 
between wire centres, and dw the wire diameter. 

For coils with air cores there is a further increase in resistance due to flux from the centre of the solenoid 

‘leaking’ into the coil especially at the ends (see Payne ref 6). With a ferrite core having a high 

permeability there is very little leakage and it is assumed that this effect can be ignored. 

For the coils considered here the loss due to the conductor is small and generally the ferrite loss dominates. 

The conductor resistance increases as √f (Equation 8.2.1) whereas the ferrite loss increases as f, and so the 

copper losses will be a higher fraction of the total loss at the lower frequencies. For instance 10 turns of 

copper wire with a diameter of 1 mm wound onto a a Fair-Rite Toroid 5961001801 (OD 22.1mm ) will 

have a resistance of 0.04 Ω at 1 MHz, assuming the proximity effect is 1.6. The reactance at 1 MHz is 52 Ω 
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so if the conductor loss were the only loss the Q would be 52/0.04 = 1300. The Q of the ferrite at this 

frequency is 480 and so the combined Q is Q1Q2/(Q1+Q2) = 351. The conductor resistance thus gives a 27% 

decrease in the overall Q. But note that this decrease is from a high value of 480, and a larger wire diameter 

would reduce the conductor loss below that calculated. 

At the higher frequency of 10 MHz, the conductor resistance is 0.16 Ω assuming the proximity effect is 1.6. 

The reactance is 520 Ω so if the conductor loss were the only loss the Q would be 520/0.13 = 4000. The Q 
of the ferrite at this frequency is 82 and so the combined Q is Q1Q2/(Q1+Q2) = 80.4. The conductor 

resistance thus gives only a 2% decrease in the overall Q at this higher frequency. 

The above analysis is not thorough but is designed to give a guide on the effect of conductor loss.  

 

 

9. OTHER ISSUES RELATED TO SELF CAPACITANCE 

9.1. Low Frequency Inductance and AL 

The low frequency inductance of a ferrite toroid is given by : 

 

   L = µoµrN
2Ae / le         9.1.1 

    where  Ae is the cross-sectional area of the ferrite 

      le is the mean length of the magnetic path 

 
The factor µoµr Ae / le is given by the ferrite supplier as AL, and so L = N2AL. However the inductance 

calculated this way can differ significantly from the measured value, and this is because the tolerance on AL 

is large, and typically ± 20%. In comparing theory with experiments it was important to eliminate this error 

and so in all cases the calculated inductance was factored to make the low frequency inductance agree with 

measurements. Thus it was assumed that the low frequency measurement is accurate and free from any 

effects of self-resonance. If AL is not quoted it can be calculated from : 

 

AL = µ0 µf Ae / le    H/N2    9.1.2 

where  µ0= 4π 10-7,  

µf is the relative permeability of the ferrite  

Ae is the cross-sectional area of the toroid, in m2 
le =  π Df, equal to the mean circumference of the toroid in 

meters 

 

If AL is in µH/N2 , Ae is in mm2 and le  is in mm, this becomes: 

 

AL = 0.4 π 10-3 µf Ae / le     µH/N2    9.1.3 

    

9.2. Gap Capacitance 

Most authors say that the ends of the winding should be not too close together so as to minimise the 

capacitance across the gap, and a gap of around 10% of the toroid periphery is often recommended.  

In a test the author reduced the gap from around 13% to around 5%, and the measured SRF reduced by only 

3.5%. The 5% gap in fact represented a full winding since there were 20 turns and so this ‘gap’ equalled the 

pitch of the winding.  

For the toroids measured here the gap was about 10% for all windings, and good agreement with the theory 

was obtained with no allowance for gap capacitance. However, this good agreement did depend upon 

having a low capacitance test jig with its stray capacitance carefully calibrated-out (see Section 11.2). 

 

9.3. Capacitance between wire leads 

The toroids measured here had short connecting leads of length around 3mm for each of the two leads. In 

practice longer leads may be necessary and these will introduce additional capacitance and reduce the SRF. 

This lead capacitance will have to be added to the self-capacitance calculated by the equations here. 
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Initially an attempt was made to measure the capacitance between two 12 mm long leads of diameter 1mm 

with a spacing of around 4mm and this gave a capacitance averaging 0.25 pF over the frequency range 100 

to 200 MHz. However this small value is very difficult to measure accurately, and the measurements varied 

erratically over this frequency range from about 0.18 pf to 0.28 pf.  

An alternative is to calculate the capacitance and that of a two wire transmission-line is given by C= πϵ0 lw / 

[Ln (d/r)]. For lw =12 mm, d= 4.5mm and r = 0.5 mm this gives C = 0.152 pf. However this equation 
assumes that lw >>d and so does not account for any end effect.  

The acid test here is to measure the change in SRF when the leads are introduced and this can then be 

translated into an increase in capacitance from the equations here. In a test with an 11 turn coil on an FT 

50-61 core the SRF reduced from 59.4 MHz with the minimal leads of 3 mm each, to 53.76 MHz when the 

leads were extended by 12mm with a gap of 4.5mm. For this change in SRF the capacitance of the 

extension was calculated to be 0.169 pf, which is 11% greater than that calculated from the transmission 

line equation.  

So the most reliable estimate of lead capacitance is given by adding 11% to the transmission-line equation 

to give : 

 

 Cleads ≈1.1 πϵ0 lw  / [Ln (d/r)] farads     9.3.1 

 
 This is more conveniently given as follows for the wire length in mm and the capacitance in pf : 

 

Cleads ≈ 0.03 lw  / [Ln (d/r)]   pf     9.3.2 

 

 

 

10. MORE ACCURATE MODELLING OF INDUCTANCE, RESISTANCE & Q 

The self-capacitance model is very useful but the following equations give better accuracy especially at 

frequencies around the resonant frequency itself. The equations come from an the analysis of series and 

parallel resonant circuits made by Welsby (ref 7). 

If a coil with a parallel capacitance is used in a parallel tuned circuit the effect of this capacitance (whether 

self-capacitance or added capacitance) is merely to reduce the capacitance necessary to resonate at any 
particular frequency. But if the coil is used in a series tuned circuit the effect of the parallel capacitance is 

to reduce the Q, increase the apparent inductance and to increase the apparent series resistance. Welsby  

derives the following equations for the series circuit, where Q, L and R, are values which would obtain in 

the absence of the SRF and Qm, Lm and Rm are the values that would be measured at a frequency f, for a 

self-resonant frequency of fr : 

 

 Lm = L [1- (1+1/Q2) (f/fr)
2]  / [1 - 2(f/fr)

2 + {(1+1/Q2) (f/fr)
4}]   10.1.1 

 

 Rm = R /[1 - 2(f/fr)
2 + {(1+1/Q2) (f/fr)

4]     10.1.2 

 

 Qm = Q [1- (f/fr)
2 (1+1/Q2)]      10.1.3 

 

 

If the Q is large such that (1+1/Q2)] can be taken as unity, these equations simplify to : 

 

 Lm = L / [ 1- (f / fr )
2
]       10.1.4 

 

 Rm =  R /  [ 1- (f / fr )
2
]

2
       10.1.5 

 

 Qm = Q [ 1- (f / fr )
2
]       10.1.6 

 

Although these equations were derived for lumped components they give very good predictions for the 

ferrite toroid, despite this having been shown to be a transmission-line. Their accuracy can be judged by 
calculating the inductance from Equation 10.1.1, of 10 turns wound onto a Fair-Rite Toroid 5961001801, 
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Material 61 and comparing with measurements. At each frequency the value of L and Q was calculated 

from the ferrite data at that frequency (Qf = µ’/ µ’’). fr was calculated at each frequency for the permeability 

at that frequency and using Equation 15.5.1. 

This gave the following comparison with measurements: 

 

 
 

 

Figure 10.1 Comparison of Theory with Measurements (full equations) 
 

 

The agreement is generally within ±4% which is surprising good given the uncertainty of the ferrite 

parameters as read by the author from the published data sheet, and the manufacturing tolerances. 

 

For comparison the simplified equations, Equation 10.1.4 and Equation 4.1 give : 

 

   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 10.2 Comparison of Theory with Measurements (simple equations) 

 

It is emphasised that for both of the above graphs fr was calculated at each frequency, using the ferrite 

parameters at that frequency. 
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It is clear from the above that these equations are accurate enough to be a good substitute to measurements. 

They would also allow an analysis of the effects of manufacturing tolerances, which is difficult to do with 

measurements.  

 

11. MEASUREMENTS 

11.1. Test Coils 

Some of the test coils are shown below.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 11.1.1 Some of the test coils 

 

 

From left to right these are  

a) Fair-Rite 5961001801 :   OD 22.1 mm, Material 61 (Ni-Zn) 

b) Ferroxcube TN23/14/7 :  OD 23 mm, Material 4C65 (Ni-Zn) 

c) Amidon FT50-61 :  OD 12.7 mm Material 61 (Ni-Zn) 

d) Fair-Rite 5977000301 :  OD 12.7 mm Material 77 (Mn-Zn) 

 

 
Notice that the wire ends are connected to the same point on the SMA connector as the calibration loads 

shown below.  

 

 

11.2. Test Equipment and Calibration 

All measurements were made with an Array Solutions UHF Vector Network Analyser. Calibration of this 

analyser required an open circuit, a short circuit and known resistive load, and these are shown below.  

 

 

 

 

 

 

 



Payne : Self-Capacitance of Toroidal Inductors with Ferrite Cores 

 20 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 11.2.1 Calibration loads 
 

To ensure that the resistive load had minimal stray reactance a thick-film resistor was used, and this had the 

added advantage that it could be located in the same plane as the short circuit. Its value was 47 Ω ± 1%. 

SMA connectors were used because they are small and therefore have a small stray capacitance, and so any 

error in calibrating this out would also be small. 

 

 

11.3. Measurement Accuracy 

It is difficult to assess the accuracy of the measurements since no calibrated reactances were available. 

However in independent tests the accuracy of the analyser compares well with the much more expensive 

HP Agilent 8722D (ref 11).  

 

12. SUMMARY 

The inductance of coils increases with frequency and this is often attributed to self-capacitance across the 

coil. However, it is shown that self-capacitance does not exist, and that the inductance increase in ferrite 

cored toroids is due to standing waves between the conductor and the ferrite.  

Nevertheless the model of a capacitor in parallel with a fixed inductor gives a useful description of the 

inductance changes. It is shown here that the equation for self-capacitance has the form C’self = A + B/N2 
and is given by : 

 

 

C’self = [1.13 10
-3 

 le lp 
2
 ] / [0.4 π Ae)]  +  10

6
/[(2π k fp)

2
 AL N

2
] pf 12.1 

 

 where   µf is the low frequency permeability of the ferrite 

lp is periphery of the toroid cross-section in mm 

   le is the length of the magnetic path length in mm 

AL is the inductance factor given by the ferrite supplier, in µH/N
2
  

  N is the number of turns 

  fp is the frequency at which the permeability peaks in MHz 

k is a ferrite material parameter, found to be equal to 2 for all 

ferrites investigated, both Ni-Zn and Mn-Zn. 
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The apparent inductance at any frequency is then given by : 

 

   Lapp = Xt / ω = - XL XC/(XL-XC)/ ω     12.2 

 

where  XL = ωLfo = ω AL N
2
 

     Xc = 1/(ωCself)  

     Cself given by Equation 12.1 or 12.4 

 

The manufacturer’s tolerances on the ferrite parameters are quite large but it is shown that the effect on Lapp 

is relatively small. 

Losses due to the ferrite can be approximately modeled as a resistance in parallel with the inductor and 

capacitor. The value of this resistance is : 

 

Rp  = 2 π N
2
 AL ψ       12.3 

    

The factor ψ is derived from the published curves and is the product of the ferrite Q (= µ’/µ’’) and the 

frequency at which this applies. So for instance for the Fair-Rite material 61, ψ = f (µ’/µ’’) = 660 (ie at 10 

MHz, µ’/µ’’ = 66).  
The conductor losses are generally much lower than the ferrite losses and can be ignored. The exception is 

when the frequency is low enough for the ferrite Q to be very high (eg several hundred), but even then the 

overall Q is still high even with the conductor loss. 

 

An alternative form of Equation 12.1 which is possibly generic for all modern ferrites of all makes is : 

 

C’self ≈ [1.13 10
-3 

 le lp 
2
 ] / [0.4 π Ae)]  +  10

9
 µf 

(2x-1)
 le  / [ 49.6 k

2
 K

2
 Ae N

2
]    12.4 

 

  le is the length of the magnetic path length in mm 

  lp is the length around the perimeter of the ferrite cross-section in mm 

  Ae) is the area of the ferrite cross-section in mm
2 

  
µf is the low frequency permeability of the ferrite  

    

 

Notice that the first term of this equation is dependent only upon the toroid dimensions and is independent 

of permeability or number of turns. In the second term the factors x, k and K have been determined for 

Fair-Rite materials as x=1.16, k=2 and K =5300. However it is possible that all modern ferrites have similar 

values and as such the above equation may be generic, requiring only the ferrite dimensions, the 

permeability and the number of turns. 

 

 

 

13. APPENDIX 1  : The Measurement of Amidon FT 50-61 Permeability 

To measure the complex permeability of the Amidon FT50-61 toroid it was wound with 4 turns of 0.71 mm 

enamelled copper wire. This small number of turns ensured that the SRF was reasonably high (> 175 MHz) 

so that errors in compensating for this were minimised.  

An excel spread-sheet was set-up using Equations 10.1.1 and 10.1.3 to calculate the inductance and Q at 

each frequency, since these equations had been shown to be accurate (see Figure 10.2).  The values of µ’ 

and µ’’ were then adjusted at each frequency to give the best match with the measurements (the starting 

values of µ’ and µ’’ were those of Fair-Rite 61 material).  
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14. APPENDIX 2 : The Effect of the Ferrite Dielectric Constant 

The dielectric constant of the ferrite will reduce the phase velocity, and thereby reduce the SRF. However, 

the electric field inside a coil is very small, so displacement currents are very small and the effect of the 

dielectric is therefore much reduced. Support for this view comes from Sichak (ref 8) who has analysed a 

coaxial cable with a helical inner line, and who says ‘The significant parameter is (2πa/N)(2πa/λ), where 

N= number of turns per unit length, a=radius and λ=wavelength. When this parameter is considerably less 

than 1, the velocity and characteristic impedance depend only on the dimensions. The dielectric inside the 
helix has only a second order effect,………’ (my italics).   

The Sichak criterion FSichak = (2πa/p)(2πa/λ) is more conveniently expressed as 4π A/(p λ) where p is the 

pitch of the winding and A the cross-sectional area. Based on Sichak’s paper the author has derived the 

following approximate equation for the effective dielectric constant of a dielectric which totally fills the 

inside of the coil (ref 9)  : 

 

  Effective εeff ≈ [(εr - 1) (F Sichak)
1.5 ]/8   + 1     14.1 

    where  Fishcak  = (2πa/p)(2πa/λg) =  4π A/(p λg) 

     λg = 300/[f µf 
0.5], f in MHz 

     A is the cross-sectional area of the ferrite  

     p is the pitch of the winding 

     εr is the dielectric constant of the ferrite 
 

The above equation is valid for values of F Sichak up to 1.25.  

The factor Fishcak increases with frequency, and taking for example 30 MHz, its value is 0.14 for the coil 

shown in Figure 11.1.1(a)  The dielectric constant for both Ni-Zn and Mn-Zn ferrites is about 10 at high 

frequencies (see Snelling ref 12 p127) and so the effective dielectric constant from the above equation is 

1.06. The SRF is proportional to 1/√ ε’ and so the effect of the ferrite permittivity is to reduce the SRF by 

3%. Given the large uncertainty in the value of permeability the effect of the dielectric constant can be 

ignored.  

 

15. APPENDIX 3 : Self Resonant Frequency Assuming a Transmission-line 

15.1. Introduction 

When a structure carries a standing wave, resonance can occur when the path length of the wave lw is equal 
to multiples of λf /4, where λf is the wavelength.  

 

This leads to resonant frequencies fr having the general form: 

 

fr = c / [ n lw (1+δ) (μeεe)
0.5 ]  Hz     15.1.1 

 

  where  c is the velocity of light = 3 108 m/s 

μe and εe are the effective relative permeability and dielectric constant  of the 

medium 

δ is the end effect (see later) 

n= 2 for half wave resonance, and 4 for quarter wave resonance 
 

For frequencies in MHz this equation is more conveniently expressed as: 

 

 fr = 300 / [ n lw (1+δ) (μeεe)
0.5 ]  MHz    15.1.2 

For the toroidal coil it is is therefore necessary to determine the length of the path lw, the end effect, and the 

effective permeability and permittivity. 

15.2. Path Length 

Initially it was assumed that the wave would follow the conductor, but experiments show that the path 

length is somewhat shorter than this, and is consistent with it being the projection of the conductor onto the 

surface of the ferrite. A consequence of this is that the diameter of the conductor will not affect the SRF nor 
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therefore the self-capacity. This conclusion was also reached by Knight (ref 2) who says ‘ .... it was 

established that there was no statistically-significant wire-diameter effect’.  

So if N turns are wound onto a ferrite toroid with a magnetic length of le and a circular cross-section of 

diameter df and then the path length lpath will be : 

 

   Circular lpath = [(N π df)
2 + (α le )

2]0.5     15.2.1 
 

If the ferrite has a rectangular cross-section with a total periphery of  lp , then the path length is: 

   

   Rectangular lpath = [(N lp )
2 + (α le )

2]0.5     15.2.2 

 

The factor α is the fraction of the toroid circumference covered by the winding. Here it is assumed that 

there is a 10% gap and so α =0.9 (see Section 8.3). 

 

NB the above is based on the wave following the diameter of the ferrite. However an alternative 

explanation is that the wave follows the wire but the permeability is reduced by the ratio of the areas of the 

coil and ferrite. These two approaches lead to the same equation, as the following shows for one turn of a 

coil of radius ac, wound around a ferrite of radius af. The length of the wire is 2π ac and so the factor lw 
(μe)

0.5 in Equation 15.1.2 becomes 2π ac (μe)
0.5 where μe is the effective permeability of the ferrite, and this 

is equal to (af/ac)
2 μf,  where μf is the ferrite permeability (see Snelling ref 12). 

So we have: 2π ac (μe)
0.5 =2π ac [(af/ac)

2 μf] 
0.5 = 2π ac (af/ac) [μf] 

0.5 = 2π af [μf] 
0.5. So a wave following the 

wire radius with a permeability of [(af/ac)
2 μf is equivalent to assuming that the wave follows the ferrite 

radius with a permeability of μf. 

 

15.3. Phase Velocity 

For a conductor totally immersed in a ferrite material with a permeability µ and dielectric constant ϵ the 

phase velocity of an EM wave will be slower than that in air by the factor √(μ ε).  

In general both the permeability and permittivity have loss and expressed in complex form they become: 

 

  μ = μ’ -  j μ’’        15.3.1 

   

  ϵf = ϵ’ - j ϵ’’        15.3.2 

 

μ’ is the ‘real’ part of the permeability, and is that which is normally quoted as the permeability of a ferrite.  

μ’’ is the ‘imaginary’ part and represents the loss. Note that the convention here is the opposite to normal 
circuit theory where the loss is the ‘real’ part. The parameters μ’ and μ’’ are a function of frequency and 

often given graphically as follows : 
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Figure 15.3.1 Typical Permeability Curves 

 

 

The dielectric constant is not normally given for ferrites but Snelling gives a value of ε’ = 10 for both Ni-Zn 

and Mn-Zn materials at high frequencies. The dielectric loss factor ε’’ is not known. 

When the conductor is wound around a toroid the conductor is clearly not immersed in the material as 

assumed above, but experiment shows that the phase velocity is nevertheless reduced by √μ. This is 

somewhat surprising but is consistent with the conductor being a transmission-line whose inductance per 

unit length has increased by the same amount as the coil, that is by μ. However the same is not true for the 
dielectric constant, and its effect is considerably reduced because the electric field within the ferrite is very 

small. So it is the effective dielectric constant εeff which is relevant here (see Appendix 2).  

 

When the ferrite is operated at a low frequency the loss factors have a small effect on the phase velocity, 

and can be ignored. However at higher frequencies μ’’ can be as large or larger than μ’, and so loss cannot 

be ignored. In this situation Skutt (ref 10) shows that the velocity is reduced by the factor : 

 

    { |µ| |ϵ| + (μ’ ϵeff
’ - μ’’ ϵeff’’) }

0.5 / 2 0.5     15.3.3 

 

NB In Figure 15.3.1 the real part μ’ is shown heading for a value of less than unity, and this is most 

unlikely. The curve is probably that of the magnetic susceptibility, (μ’-1), especially since the standard 
coaxial measurement method naturally gives this rather than μ’ (see Hamilton ref 3). 

 

 

15.4. End Effect 

A transmission-line will often appear to have a greater length than its physical length because the fields 

extend beyond its ends. This is the so-called end-effect which is common in all open ended resonators, 
including transmission-lines and organ pipes. However in the toroid the flux is totally contained and no 

end-effect has been found.  

 

15.5. Equation for SRF 

Putting all the above together gives the following SRF for λ/2 resonance : 

   
  fλ/4  = 300 / [ 2 lpath  { |µ| | ϵeff| + (μ’ ϵeff

’ - μ’’ ϵeff’’) }
0.5 / 2 0.5]       MHz  15.5.1  

 

   where |µ| =[ μ’2 + μ’’2]0.5 
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    |ϵ| =[ (ϵeff’)
2  + (ϵeff’’)

2 ]0.5 

    lpath = [(N lp )
2 + (α le)

2]0.5   

    N is the number of turns 

    le is the length of the magnetic path in metres 

    lp is the length of the periphery of the cross section in metres 

    α is the proportion of ferrite with winding (ie 0.9) 
 

 

This equation can be simplified if the dielectric constant is assumed to be unity and the ferrite is operated at 

a frequency where the ferrite Q is above unity, ie  μ’ >  μ’’ (this corresponds to 20 MHz for material 61 

(Figure 4.1). 

 

Self-resonant frequency fr  ≈ 300 / [ 2 lpath  (μ’) 
0.5

]       MHz    15.5.2 

 

 

 

 

16. APPENDIX 4 : Comparison with Published Measurements 

It is useful to compare the theoretical values for Cself with the only published measurements which the 
author could find – those of Knight ref 2. He wound 22 coils on an Amidon FT 50-61 ferrite core (always 

the same core) with from 4 to 36 turns. He gives the equation for the self-capacitance of this core as : 

 

   Cself = 0.90 + 78.1/N2  pf    16.1 

 

To derive this equation he ‘ …resonated the coil against a series of known capacitances, fitting the data to a 

regression line, and extrapolating to find the resonant frequency when C=0’. 

 

For comparison Equation 7.3.1 gives : 

 

Cself = 0.49 +106/N2 pf    16.2 
These equations are plotted below: 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 16.1 Comparison of Theory with Knight’s measurements 
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The tolerance in the theoretical value due to manufacturing tolerances is ±12% on the first term and ±20% 

on the second term.  So the first term could be between 0.43 and 0.59 and the second term between 84.8/N2 

and 127/N2 . 

The largest percentage difference between Knight’s measurements and the theoretical curve is when N is 

large. The capacitance is then very small at 0.9 pf for Knight’s equation and 0.49 pf for the theoretical 

equation. However Knight’s equation includes the capacitance of his leads, which he estimated to be 0.05 
pf, but Equation 9.3.2 gives the value as 0.15 pf. Assuming this is a better estimate of his lead capacity this 

would bring his first term down to 0.8 pf, which is within 0.21pf of the maximum likely theoretical value of 

0.59 pf, and probably within his experimental error. Interestingly Knight says at the end of his article 

‘……..it appears that the non-electrostatic component of the self-capacitance settles to about 0.40 ±0.11 pF 

as the number of turns becomes very large’, and this is consistent with the first term of Equation 16.2. 

As for the second term his value of 78.1/N2 is 8% less than the minimum theoretical value. The magnitude 

of this term is related to the rising ferrite permeability and so it is significant that Knight says ‘In the 

present work however, the evidence is that the hump in permeability in the 8 to 30 MHz range of the 

manufacturer's graph is attenuated or absent in the actual sample’. In that case one would expect a lower 

magnitude than that given by Equation 16.2.  

  

17. APPENDIX 5 : Self Capacitance in Physical Dimensions Only 

 
Equation 6.1 gives the self-capacitance when the permeability is constant, and is expressed in terms of µf  

and AL since these are parameters normally given by the manufacturer. However µf and AL are not 

independent and their relationship is given in Section 9.1 as µf / AL = le / (µ0 Ae). Substituting this into 

Equation 6.1 this becomes : 

 

Cself = 1.13 10-3 le lp 
2 [1 + { α le /(N lp)}

2 ] / (0.4 π Ae) pf   17.1 

 

Where  N is the number of turns 

     le is the length of the magnetic path in mm 

     lp  is the peripheral length of the cross-section in mm 

     Ae is the cross-sectional area of the ferrite in mm2
 

     α is the proportion of ferrite with winding (ie 0.9) 

 

Writing this in the form Cself = A +B/N2 gives : 

 

Cself = [1.13 10-3 
 le lp 

2 ] / [0.4 π Ae)]  +   1.13 10-3 (le)
3 α 2 ] / [0.4 π Ae] / N

2  pf  17.2 

 

Notice that the self-capacitance is dependent only upon the ferrite dimensions and the number of 

turns, and is independent of the permeability, or the coil diameter or the wire diameter (when the 

permeability is constant). 

 

 

18. APPENDIX 6 : Compensation for changing Permeability, Method 2 

Section 7 gives a method for compensating for the change in ferrite permeability, but it works only if the 

curve of rising permeability matches that of the increasing inductance of a parallel resonant circuit. 

Fortunately most ferrites seem to have this characteristic, but if the ferrite had, say, a linearly rising 

inductance this method would not work. 

The alternative method is to retain Equation 6.1 unaltered (which assumes constant permeability), and to 

modify Equation 6.3 by making AL frequency dependent. This frequency dependence can be tailored for 

any rise in permeability.  

So the task here is to find an equation which reflects the change in inductance due to the permeability 

changes. As an example the following empirical equation does this over the useful frequency range for 

Material 61, and probably for most known ferrites: 
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Model of ferrite changes

   Lfo’ = Lfo /[1- (f/fa)
n]      18.1 

The factors fa and n are found by matching the above equation with the curve of µ’ versus frequency for the 

ferrite being used. For the Amidon Material 61 a good match was found with fa = 73 and n= 1.5. This gives: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 18.1 Self Capacitance Model cf Measured Inductance 

 

 

Of course Equation 18.1 is only one of many possible equations which can be found to match the changing 

permeability with frequency. However, continuing with this example Equation 18.1 can also be expressed 

as : 

 

   AL’ = AL /[1- (f/fa)
n]      18.2 

It would be useful to find generic values for fa and n, for any ferrite. It is assumed here that n is the same 

for all ferrites at 1.5 and that fa scales according the frequency at which the permeability peaks, fp. This 

frequency for the Amidon material 61 is 28 MHz, so fa = 2.6 fp. So a possible generic equation for AL’ is : 

 

    AL’ ≈ AL /[1- (0.38f/fp)
1.5]     18.3 

 

     where fp is the frequency at which the permeability peaks 

    

The apparent inductance is now: 

 

Lapp = - XL XC/(XL-XC)/ ω      18.4 

     
where  XL = ωAL’N2 

     Xc = 1/(ωCres)  

     Cres given by Equation 6.3 

AL’ ≈ AL /[1- (0.38f/fp)
1.5]  

fp is the frequency at which the permeability peaks 

 

If Equation 18.4 is applied to the 11 turn coil on the FT 50-61 toroid, it gives the following comparison 

with measurements : 

 

 

 
 



Payne : Self-Capacitance of Toroidal Inductors with Ferrite Cores 

 28 

0

5

10

15

20

1 10 100

In
d

u
c

ta
n

c
e
 µ

H
  

Frequency MHz

Self Capacitance Model cf  Calculated Inductance

Inductance from Self Capacitance µH

Measured Inductance at terminals

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  
Figure 18.2 Plot of Equation 18.4 cf Measurements 

 

 

 

 

 

19. APPENDIX 7 : Tolerances and Uncertainty 

19.1. Introduction 

The degree to which the equations given in this article agree with measurements is dependent upon the 

accuracy of the toroid parameters as supplied by the manufacturer. Some of these parameters have a large 

tolerance and the effect of this on the accuracy of the equations is assessed below.  

19.2. Uncertainty in Permeability 

The uncertainty in the value of AL is  ± 20%. Some of this is attributable to the permeability, and some is 

due to the tolerances on the physical dimensions. For instance for the Amidon FT50-61 the following 

dimensions are given : OD 12.7 mm ±0.25 mm, ID 7.15 mm ±0.12 mm and height 4.9±0.25 mm. So the % 

tolerance on each is: OD ±2%, ID ±2%, and height ±5%. If the mean length of the magnetic path le has the 

same uncertainty as the OD and ID this also has a tolerance of ±2%. 

If all these tolerances are uncorrelated we can assume they add in quadrature, so that if the uncertainty on 
the permeability is x, then [(22+22+52) + 22) + x2]0.5 = 20 (the first three factors give the uncertainty in the 

area, and the fourth the uncertainty in the magnetic path).  

The uncertainty on permeability, x, from this equation is ±19 %, so the effect of the physical uncertainties 

on AL are very small. 

This uncertainty in permeability is reflected in the same uncertainty in the frequency at which the 

permeability peaks fp, and thus the start of the roll-off. This is because the product of permeability and the  

-3dB roll-off point are approximately constant for any particular material, and this is known as the Snoek 

product (see Figure 7.5.1). So a lower permeability ferrite will have a higher roll-off frequency and vice-

versa, and thus we can expect an uncertainty on fp of ±19 %. 

There is also a difference between manufacturers for what they claim is the same material, as shown below 

for material 61: 
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Figure 19.2.1 Ferroxcube 4C65  

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 19.2.2 FairRite Material 61 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 19.2.3 Amidon Material 61(Author’s measurements) 
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As an example of the difference, the frequency at which the permeability peaks is 25 MHz for Ferroxcube, 

20 MHz for Fair-Rite and 30MHz for Amidon, a range of  ± 25%. 

There is some doubt about the accuracy of Ferroxcube curves because a core TN23/14/7 having material 

4C65, and wound with 10 turns gave an inductance v frequency which did not correspond with the Figure 

19.2.1 but agreed almost exactly with the FairRite data Figure 19.2.2.  

As for Amidon, the author has been unable to find any published permeability information from them, and 
so the data in Figure 19.2.3 is from the author’s own measurements. 

In contrast Fair-Rite publish full data on all their materials, and in the author’s experience this is 

representative of the purchased item. 

19.3. Uncertainty in Physical dimensions 

The % tolerance on the linear dimensions are OD ±2%, ID ±2%, height ±5%. If the mean length of the 

magnetic path le has the same uncertainty as the OD and ID this is also ±2%. 
The width of the toroid is (OD-ID)/2 and so the cross-sectional area Ae will have an uncertainty of 

[(22+22+52)]0.5 and this is equal to ±6%.  

The peripheral length around the cross-section lp will have an uncertainty of [(22+22+52)]0.5 = ±6% 

(assuming the OD and ID tolerances are uncorellated). 

19.4. Uncertainty in Derived parameters 

The factors fp , k, K and x are derived from the published permeability curves.  
For  fp there is an uncertainty in determining the peak permeability from the published curves of say ±5%, 

and this is to be added to the manufacturing tolerance of ±19% (the same as permeability) giving a total of 

[(192+ 52)]0.5 = ±20 %.  

For K and x, these have only been determined for the Fair-Rite ferrites, and it is assumed that the combined 

uncertainty is the same as for fp, at ±19 %.  

For k, its value of 2 appears to be universal for all modern ferrites, and it is assumed to have an uncertainty 

of ±5%. 

19.5. Uncertainty in Equation 7.3.1 

If we express the self-capacitance as C’self  = A + B/N2, then the uncertainty in A and B is estimated as 

follows: The factor A has uncertainty in µ divided by AL, but these are correlated and so the errors cancel. 

The square of the periphery lp will have an uncertainty of 2 * 6 =  ±12 %. 

The factor B has uncertainty in fp
2/AL, and given that the fp ∝ 1/µ and AL ∝ µ the overall uncertainty is 

±20%. 
 

19.6. Uncertainty in Equation 7.5.2 

If we express the self-capacitance as C’self  = A + B/N2, then the uncertainty in A and B is estimated as 

follows.  

The factor A has uncertainty in le lp 
2 / Ae. There is some correlation between the lengths and the area, and 

so a tendency for the errors to cancel, so it is estimated that the combined uncertainty is [(22+122-62)]0.5 = 
±11%. 

 

The factor B has uncertainty in µf 
1.16 le  / [  k

2 K2 Ae]  giving a total of [(192+22+52 +192 +192 +  62 )]0.5 = 

±35%. 

 

 

20. APPENDIX 8 : Simplification of Equation 7.2.2 

The middle term of Equation 7.2.2 is often much smaller than the sum of the other two terms and can 

therefore be ignored, as can be seen from Equation 7.2.3. 

The error in ignoring this term depends upon the number of turns N, the permeability µ, and the frequency 

at which the permeability peaks fp. The error is also dependent upon the toroid geometry in that this 

determines the ratio of le
2 / lp

2. This has a surprisingly large effect because, in commercially available 
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toroids, as the overall diameter increases the relative cross-section decreases (ie the toroid becomes 

slimmer). For example the following curves show the error in discounting the middle term for 5 turns 

wound onto toroids with an overall diameter of 12.7, 22.1, 35 and 61 mm : 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 20.1 Error for N=5, irrespective of core diameter 

 

However this comparison is unrealistic in that it assumes that the large toroids have the same number of 

turns as the smallest : whereas it is reasonable to consider 5 turns on the 12.7 mm toroid this small number 

is most unlikely on a 61 mm toroid. More realistic is to assume that the number of turns increase in 

proportion to the diameter, albeit with a small number of turns since this is the worst case. If the number of 

turns is : 12.7 mm 5 turns, 22.2 mm 9 turns, 35 mm 14 turns, and 61 mm 24 turns, the error in discounting 

the middle term becomes : 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

Figure 20.2  Error for N proportional to diameter 

 

This shows that the error in discounting the middle term is less than 6% if the permeability is not less than 

16 and the number of turns is not unrealistically small for the diameter of the ferrite.   
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