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   Abstract—The classical book by James Clerk Maxwell, “A 

Treatise on Electricity and Magnetism” (1873) [1], described 

an interesting method for the calculation of inductances, de-

rived from a method that calculates mutual inductances. The 

method was implemented in the program Inca, available at 

http://www.coe.ufrj.br/~acmq /programs. This article dis-

cusses the implementation, and also discusses several other 

formulas for inductance and mutual inductance calculation. 

 

I. MUTUAL INDUCTANCE 

 

The mutual inductance between two current filaments can be 

calculated by Neumann’s formula: 
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where ds and ds’are incremental sections of the filaments, 

the dot means scalar product, and r is the distance between 

them. The exact integral is obtained from an adequate para-

metrization of the geometry of the filaments. 

 

701.]† The mutual inductance between two coaxial filamental 

circles, one with radius a and another with radius A, with 

distance between centers b, can be calculated as: 
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This integral can be exactly solved in the form: 
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where K and E are the complete elliptic integrals of first and 

second kinds with modulus k: 

                                                           
† Numeration in Maxwell’s book. 

( )

( ) ϕϕ−==π=

ϕ−

ϕ
==π=

∫

∫
π

π

dkkkE

k

d
kkK

 sin1E)2/,E(

sin1
F)2/,F(

2

0

22

2

0

22

     (4) 

To calculate the mutual inductance between two concentrical 

coils with integer number of turns, the coils 1 and 2 are first 

decomposed on sets of n1 and n2 circular closed loops, and 

the total mutual inductance is obtained from the evaluation 

of: 
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where Mij is the mutual inductance between the loops i and j.  

(It’s possible to have one of the coils with the last turn in-

complete.  (3) gives the right answer when one of the turns 

covers just θ radians if multiplied by θ/(2π).) 

 

II. SELF-INDUCTANCE 

 

693.]† The inductance of a coil with uniform section, where 

the radius of curvature is large compared with the dimen-

sions of the transverse section of the conductor, can be calcu-

lated by computing the mutual inductance between two fila-

mental conductors placed at a distance equal to the geomet-

rical mean distance or every pair of points in the section of 

the conductor. The geometrical mean distances for a round 

conductor with radius r, for a flat wire of width a, and for a 

square wire with side b are: 
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The calculation in this way assumes uniform current in the 

wire.  

 

Inductance of a solenoid 

 

In the case of a solenoid with integer number of turns, the 

double sum (5) can be greatly simplified, because there are 

only 2n-1 different terms to compute, instead of the n2 of the 

general case. Considering the turn numbers as i in one coil 

and i’ in the other, placed vertically at a distance R, the mu-

tual inductance between turn 1 and turn 1’, M11’, appears n 
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times, M21’ and M12’ appear n-1 times, M31’ and M13’ appear 

n-2 times, and so on, until Mn1’ and M1n’ that appear just 1 

time. If the image coil were assembled outside or inside, 

instead of above, just n different terms would be necessary, 

but the coils would be different, and the error probably larg-

er. See Kirchhoff’s formula below for a similar approach. 

The Pascal routine used in Inca (with the drawing routines 

and messages removed) is shown below: 

 
{ 
Inductance of a solenoid by Maxwell’s 
method, using elliptic integrals 
Rounds the number of turns, n ≥1 
} 
function MaxwellLEl(n,h,r,b,d:real):real; 
var 
  a1,c,b1b2,RM,z1,z2,z10,soma,turn1, 
  turn2:real; 
  v,vt:integer; 
begin 
  vt:=round(n); 
  RM:=d/2*exp(-0.25); {g. m. d.} 
  a1:=h/vt; 
  b1b2:=RM; 
  z10:=b+a1/2; 
  z1:=z10; 
  z2:=z10; 
  for v:=1 to vt do begin 
    c:=2*r/sqrt(sqr(2*r)+sqr(z1-z2-b1b2)); 
    EF(c); 
    turn1:=-r*((c-2/c)*Fk+(2/c)*Ek); 
    if v=1 then soma:=vt*turn1 
    else begin 
      c:=2*r/sqrt(sqr(2*r)+sqr(z1-z2+b1b2)); 
      EF(c); 
      turn2:=-r*((c-2/c)*Fk+(2/c)*Ek); 
      soma:=soma+(vt-(v-1))*(turn1+turn2); 
    end; 
    z1:=z1+a1; 
  end; 
  MaxwellLEl:=4e-7*pi*soma; 
end; 

 

Flat and conical coils 

 

A conical of flat coil doesn’t admit this simplification, but 

can still be decomposed in a series of circular rings. The 

mutual inductance between two coaxial conical coils can be 

still calculated by (5), and the self inductance can be calcu-

lated as the mutual inductance between two identical coils 

separated by (6). 

 

Evaluation of the elliptic integrals 

 

The complete elliptic integrals can, in principle, be evaluated 

by the series: 
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A problem is that if R is much smaller than the radius of the 

loops, the modulus k in (3) tends to 1 in the integrals involv-

ing a turn and its adjacent copy, and the evaluation of K be-

comes problematic. The series converges very slowly, and 

easily millions of terms must be used. Numerical integration 

is an alternative when this happens, but it must be performed 

with high resolution due to the large derivatives of the inte-

grand close to the end of the interval (about 100000 intervals 

with an uniform Simpson’s rule are necessary for good preci-

sion up to k = 0.999999999). It is possible to use different 

series, that converge quickly for k close to 1 [15]. However, 

a very simple algorithm exists, the AGM (arithmetic-

geometric mean) method, the produces accurate values 

quickly. A Pascal function that evaluates F(c) and E(c) using 

the AGM method, implemented in the Inca program, is: 

 
{ 
Complete elliptic integrals of first  
and second classes - AGM method. 
Returns the global variables:  
Ek=E(c) and Fk=F(c) 
Doesn’t require more than 7 iterations for  
c between 0 and 0.9999999999. 
Reference: Pi and the AGM, J. Borwein and  
P. Borwein, John Wiley & Sons. 
} 
procedure EF(c:real); 
var 
  a,b,a1,b1,E,i:real; 
begin 
  a:=1; 
  b:=sqrt(1-sqr(c)); 
  E:=1-sqr(c)/2; 
  i:=1; 
  repeat 
    a1:=(a+b)/2; 
    b1:=sqrt(a*b); 
    E:=E-i*sqr((a-b)/2); 
    i:=2*i; 
    a:=a1; 
    b:=b1; 
  until abs(a-b)<1e-15; 
  Fk:=pi/(2*a); 
  Ek:=E*Fk 
end; 
 

True spiral coils 

 

The equation that gives the mutual inductance between two 

general coaxial conical coils is a more general version of (1) 

(see fig. 1): 
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where, for i=1 and 2: 
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It is assumed that both spirals start at the same angle. This 

apparently irreducible integral [7] can be solved numerically. 

The self-inductance of a conical coil can be calculated by 

considering two identical coils separated by a vertical dis-

tance R’, that is R with a small correction for the inclination 

of the wire: 
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Fig. 1. Conical coil. 

 

where h is the height of the coil, r is the radius of the turns 

(always measured between wire centers), and n is the number 

of turns. For a conical coil, the geometrical average of the 

radii is used, and the correction is approximate (the distance 

between wires varies along two stacked identical conical 

coils). The numerical integration must be done with high 

resolution, due to the small distance between the filaments. 

 

True solenoidal coils 

 

For solenoidal coils, considering two coaxial solenoids with 

radii r1 and r2, numbers of turns n1 and n2, heights h1 and h2, 

and base heights b1 and b2 , (8) becomes: 
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where a1=h1/(2πn1) and a2=h2/(2πn2). 
  

For the self-inductance calculation, the program uses two 

identical coils separated vertically by R’ (10). The same 

simplification of the case with circular windings appears, 

with only 2n integrations over single turns being necessary 

for the evaluation of the integral. 

 

III. EXPLICIT FORMULAS FOR INDUCTANCE 

 

The Inca program also implements several formulas reported 

in the literature for the calculation of inductances of sole-

noids. In all cases, the formulas were adapted for inductances 

in Henrys and dimensions in meters. 

 

Wheeler’s approximate formula [2], for solenoids. Works 

well when the turns are closely spaced, giving a result similar 

to Lorenz’ formula (14). A version of it for dimensions in 

meters is: 
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Wheeler’s formula for flat coils [2] can be put in the form: 
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Lorenz’ formula [3], models a solenoid as a cylindrical cur-

rent sheet, and works well for solenoids with thin windings 

of closely spaced turns. This equation is seen in several texts 

(see (16)) with slightly different equivalent forms: 

n

h

rh

r
k

K
k

k
E

k

kr
L

=ε
+

=








 −
+

−
+−

ε
µ=

   ;
4

4

;
112

1
3

8

22

2
2

3

2

3

2

2

3

0

         (14) 

Kirchhoff’s formula [4], decomposes the coil in circular 

turns, as done in Maxwell’s method, and combines mutual 

inductances between turns calculated by elliptic integrals 

with f(0), an approximation for the self-inductance of a sin-

gle loop. α is the wire radius. For the case of a solenoid (the 

formula below), there is a simplification similar to the one 

described for Maxwell’s method, with only n different mutu-

al inductances that are calculated by Maxwell’s formula: 
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This formula can be easily adapted for coils of any shape that 

can be decomposed into coaxial circular rings. Russell [15] 

gives a derivation of f(0), as an approximation for an expres-

sion using elliptic functions: 
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Snow’s formula [5][6] adds a complicated correction to Lo-

renz’ formula. The result is similar to Maxwell’s or Kirch-

hoff’s formulas using circular turns, but the calculation is 

faster, without the summation. a is the coil radius, b is the 

coil height, and c is the wire diameter. The number of turns n 

shall be integer: 
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IV. EXPLICIT FORMULAS FOR MUTUAL INDUCTANCE 

 

An interesting solution involving true spiral coils was the 

formula for the mutual inductance between a circular loop 

and a true solenoid starting at it plane obtained by John Viri-

amu Jones [7]. A is the radius of the solenoid, a the radius of 

the loop, p the height of a turn divided by 2π, Θ is the final 

angle of the solenoid 2πn, and ∏(k,c) is the complete elliptic 

integral of the third kind. For solenoids at any distance from 

the loop, M=MΘ2-MΘ1. The paper also shows how to com-

pute the mutual inductance between a cylindrical current 

sheet and a solenoid. 
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If c=1, the second term reduces to zero. The complete ellip-

tic integral of the third kind: 
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can also be efficiently evaluated by an AGM algorithm [8]. 

Below is the Pascal routine used in the Inca program, that 

evaluates simultaneously the three elliptic integrals when 

they are needed. It requires at most 7 iteractions in the loop: 

 
{ 
Complete elliptic integrals of first, second, and 
third kinds - AGM 
Returns the global variables Ek=E(k), Fk=F(k), and 
IIkc=II(k,c) 
Reference: Garrett, Journal of Applied Physics, 34,  

9, 1963, p. 2571 
} 
procedure EFII(k,c:real); 
var 
  a,b,d,e,f,a1,b1,d1,e1,f1,S,i:real; 
begin 
  a:=1; 
  b:=sqrt(1-sqr(k)); 
  d:=(1-sqr(c))/b; 
  e:=sqr(c)/(1-sqr(c)); 
  f:=0; 
  i:=1/2; 
  S:=i*sqr(a-b); 
  repeat 
    a1:=(a+b)/2; 
    b1:=sqrt(a*b); 
    i:=2*i; 
    S:=S+i*sqr(a1-b1); 
    d1:=b1/(4*a1)*(2+d+1/d); 
    e1:=(d*e+f)/(1+d); 
    f1:=(e+f)/2; 
    a:=a1; 
    b:=b1; 
    d:=d1; 
    e:=e1; 
    f:=f1; 
  until (abs(a-b)<1e-15) and (abs(d-1)<1e-15); 
  Fk:=pi/(2*a); 
  Ek:=Fk-Fk*(sqr(k)+S)/2; 
  IIkc:=Fk*f+Fk; 
end; 

 

With this formula, the mutual inductance between a coil with 

circular turns and a true solenoid can be easily calculated, by 

just adding all the mutual inductances between the individual 

turns and the solenoid. 

 

The same formula can also be written as (adapting a formula 

in [8]): 
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Again, the second term disappears if A=a. Another equiva-

lent formula, that instead of the elliptic integral of the third 

kind uses incomplete elliptic integrals (the limits of the inte-

grals in (4) are from 0 to θ) is [5]: 
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Curiously, the formula for the mutual inductance between a 

circular ring and a current sheet solenoid is identical to these 

formulas, that consider a true filamental solenoid. [7]. 
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A formula for the mutual inductance between two solenoids 

modeled as current sheets, hinted in [7], is (adapting [5]): 
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The signal or the ± term is positive if x is positive. When 

r1=r2 and x=0 (coils touching), k=1, and the formula for W(x) 

tends to a limit. Comparing (21) with (20), it can be seen that 

(22) can also be written using the complete elliptic integral 

of the third kind, that is easier to evaluate. Only the formula 

for W’(x) changes: 
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Another expression for W’(x) is obtained recognizing that 

Heuman’s Lambda function Λ0(k,θ) appears in (22) (a re-

stricted case is listed in [9]): 
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The same equivalence can be used in (21). This just simpli-

fies the notation. The derivation of (22) and other variations 

of it can be found in [14]. 

 

Other formulas for mutual inductances between cylindrical 

and flat coils, that sometimes are equivalent to to ones dis-

cussed above, can be found in ref. [9] (formulas involving 

current-sheet disk and solenoidal coils, in some particular 

arrangements), [10] (current-sheet disk-solenoid mutual in-

ductance and a circular filament method), [11] (complicated 

formula for the mutual inductance between two rectangular 

coils) [12] (circular filament method for rectangular coils), 

and in the classical reference [13] (with many tables and 

references). Another interesting paper is [15], that contains 

alternative deductions, calculation methods, and equivalent 

forms for some of these equations. 

 

Turns-independent coupling coefficient 

 

When the coils are considered as current sheets, the coupling 

coefficient 
21/ LLMk = becomes independent from the 

numbers of turns in the coils. For solenoidal coils, for exam-

ple, this happens if the inductances are calculated by Lorenz’ 

formula (14) and the mutual inductance is calculated by 

Snow/Jones’ formula (22). 

 

 V. PRIMARY COILS WITH ALL THE TURNS IN PARALLEL 

 

Low inductance primary coils can be built by connecting the 

turns of the coil in parallel instead of in series. Inductances 

and mutual inductances of a transformer built in this way can 

be calculated by the procedure: 

1) Calculate the the inductance matrix of the whole system, 

considering each individual primary turn as a separate induc-

tor. The program uses (3) for inductances and mutual induct-

ances of the primary side, and for the inductance of the sec-

ondary coil. Mutual inductances between the primary turns 

and the secondary coils are obtained by (17). For n primary 

turns, this is an (n+1)×(n+1) matrix. 

2) Invert the matrix, and add all the first n lines and columns. 

This corresponds to have the same voltage over all the pri-

mary turns, and a primary current that is the sum of the cur-

rents in all the turns. 

3) Invert again the resulting 2×2 matrix, obtaining the equiv-

alent primary and secondary inductances, and the mutual 

inductance. 

A curious effect of this connection is that the secondary in-

ductance is slightly reduced, because of the different mutual 

inductances between the primary turns and the secondary 

coil. The resulting mutual inductance is similar to the mutual 

inductance between two spiral coils, and the primary induct-

ance is similar to the inductance of a single turn current sheet 

coil. 

 

VI. EXPERIMENTAL RESULTS 

 

Some solenoidal coils were wound with a copper tube and 

had their inductances measured.  The table below compares 

the measured inductances with the prediction by Maxwell’s 

method, with turns approximated by circular loops, and also 

lists the values that can be obtained with the formulas by 

Wheeler, Lorenz, Snow, and Kirchhoff. Inductances in µH, 
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dimensions in meters. 

 

Short coils with closely spaced turns: Coil radius = 0.486 m, 

tube diameter = 0.0095 m. 

 
Height  N  Mea   Whe   Lor   Sno   Kir   Max 
0.0921  5  49  44.03 49.58 49.20 49.23 49.36 
0.0719  4  33  29.29 34.13 33.82 33.85 33.94 
0.0516  3  20  17.16 21.02 20.75 20.78 20.84 
0.0312  2   9   7.96 10.57 10.33 10.35 10.39 
0.0109  1   2   2.08  3.28  3.00  3.03  3.03 
 

Long coils with widely spaced turns: Coil radius = 0.486, 

tube diameter = 0.0095 m. 

 
Height  N  Mea   Whe   Lor   Sno   Kir   Max 
2.1336  5  17   9.07  9.09 18.75 18.17 18.17 
1.7051  4  13   6.96  6.98 14.67 14.28 14.28 
1.2764  3  10   4.90  4.90 10.64 10.42 10.42 
0.8479  2   6   2.90  2.90  6.71  6.64  6.64 
0.4191  1   3   1.09  1.09  3.00  3.03  3.03 

 

The measurements show that the formulas based on a current 

sheet model (Lorenz’ formula and its approximation by 

Wheeler), fail when the turns are widely spaced. The other 

formulas, based on filaments, however, work well in all cas-

es. 

 

A version of this document was published in [16]. 

 

Acknowledgment: Thanks to Godfrey Loudner for the hint 
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